

 Biological Data Science with R

 Stephen D. Turner, Ph.D.

 2019-01-01

Preface

This book was written as a companion to a series of courses I taught at the University of Virginia introducing the essentials of biological data science with R:

	UVA Biomedical Sciences Graduate Program BIMS8382: bims8382.github.io.

	UVA Health Sciences Library Biological Data Science Workshops: stephenturner.github.io/workshops.

	UVA Translational Health Research Institute of Virginia (THRIV) Scholars program Biological Data Science course: thriv.github.io.

While this book was written with the accompanying live instruction in mind, this book can be used as a self-contained self study guide for quickly learning the essentials need to get started with R. The BDSR book and accompanying course introduces methods, tools, and software for reproducibly managing, manipulating, analyzing, and visualizing large-scale biological data using the R statistical computing environment. This book also covers essential statistical analysis, and advanced topics including survival analysis, predictive modeling, forecasting, and text mining.

This is not a “Tool X” or “Software Y” book. I want you to take away from this book and accompanying course the ability to use an extremely powerful scientific computing environment (R) to do many of the things that you’ll do across study designs and disciplines – managing, manipulating, visualizing, and analyzing large, sometimes high-dimensional data. Regardless of your specific discipline you’ll need the same computational know-how and data literacy to do the same kinds of basic tasks in each. This book might show you how to use specific tools here and there (e.g., DESeq2 for RNA-seq analysis (Love, Huber, and Anders 2014), ggtree for drawing phylogenetic trees (Yu et al. 2017), etc.), but these are not important – you probably won’t be using the same specific software or methods 10 years from now, but you’ll still use the same underlying data and computational foundation. That is the point of this series – to arm you with a basic foundation, and more importantly, to enable you to figure out how to use this tool or that tool on your own, when you need to.

This is not a statistics book. There is a short chapter on essential statistics using R in Chapter 8 but this short chapter offers neither a comprehensive background on underlying theory nor in-depth coverage of implementation strategies using R. Some general knowledge of statistics and study design is helpful, but isn’t required for going through this book or taking the accompanying course.

There are no prerequisites to this book or the accompanying course. However, each chapter involves lots of hands-on practice coding, and you’ll need to download and install required softwar and download required data. See the setup instructions in Appendix A.

Acknowledgements

This book is partially adapted from material developed from the courses I taught above, some co-taught with VP (Pete) Nagraj, from 2015-2019. The material for this course was adapted from and/or inspired by Jenny Bryan’s STAT545 course at UBC (Bryan 2019), Software Carpentry (Wilson 2014) and Data Carpentry (Teal et al. 2015) courses, David Robinson’s Variance Explained blog (Robinson 2015), the ggtree vignettes (Yu 2022) Tidy Text Mining with R (Silge and Robinson 2017), and likely many others.

1 Basics

This chapter introduces the R environment and some of the most basic functionality aspects of R that are used through the remainder of the book. This section assumes little to no experience with statistical computing with R. This chapter introduces the very basic functionality in R, including variables, functions, and importing/inspecting data frames (tibbles).

1.1 RStudio

Let’s start by learning about RStudio. R is the underlying statistical computing environment. RStudio is a graphical integrated development environment (IDE) that makes using R much easier.

	Options: First, let’s change a few options. We’ll only have to do this once. Under Tools… Global Options…:

	Under General: Uncheck “Restore most recently opened project at startup”

	Under General: Uncheck “Restore .RData into workspace at startup”

	Under General: Set “Save workspace to .RData on exit:” to Never.

	Under General: Set “Save workspace to .RData on exit:” to Never.

	Under R Markdown: Uncheck “Show output inline for all R Markdown documents”

	Projects: first, start a new project in a new folder somewhere easy to remember. When we start reading in data it’ll be important that the code and the data are in the same place. Creating a project creates an Rproj file that opens R running in that folder. This way, when you want to read in dataset whatever.txt, you just tell it the filename rather than a full path. This is critical for reproducibility, and we’ll talk about that more later.

	Code that you type into the console is code that R executes. From here forward we will use the editor window to write a script that we can save to a file and run it again whenever we want to. We usually give it a .R extension, but it’s just a plain text file. If you want to send commands from your editor to the console, use CMD+Enter (Ctrl+Enter on Windows).

	Anything after a # sign is a comment. Use them liberally to comment your code.

1.2 Basic operations

R can be used as a glorified calculator. Try typing this in directly into the console. Make sure you’re typing into into the editor, not the console, and save your script. Use the run button, or press CMD+Enter (Ctrl+Enter on Windows).

2+2

[1] 4

5*4

[1] 20

2^3

[1] 8

R Knows order of operations and scientific notation.

2+3*4/(5+3)*15/2^2+3*4^2

[1] 55.6

5e4

[1] 50000

However, to do useful and interesting things, we need to assign values to objects. To create objects, we need to give it a name followed by the assignment operator <- and the value we want to give it:

weight_kg <- 55

<- is the assignment operator. Assigns values on the right to objects on the left, it is like an arrow that points from the value to the object. Mostly similar to = but not always. Learn to use <- as it is good programming practice. Using = in place of <- can lead to issues down the line. The keyboard shortcut for inserting the <- operator is Alt-dash.

Objects can be given any name such as x, current_temperature, or subject_id. You want your object names to be explicit and not too long. They cannot start with a number (2x is not valid but x2 is). R is case sensitive (e.g., weight_kg is different from Weight_kg). There are some names that cannot be used because they represent the names of fundamental functions in R (e.g., if, else, for, see here for a complete list). In general, even if it’s allowed, it’s best to not use other function names, which we’ll get into shortly (e.g., c, T, mean, data, df, weights). In doubt check the help to see if the name is already in use. It’s also best to avoid dots (.) within a variable name as in my.dataset. It is also recommended to use nouns for variable names, and verbs for function names.

When assigning a value to an object, R does not print anything. You can force to print the value by typing the name:

weight_kg

[1] 55

Now that R has weight_kg in memory, we can do arithmetic with it. For instance, we may want to convert this weight in pounds (weight in pounds is 2.2 times the weight in kg).

2.2 * weight_kg

[1] 121

We can also change a variable’s value by assigning it a new one:

weight_kg <- 57.5
2.2 * weight_kg

[1] 127

This means that assigning a value to one variable does not change the values of other variables. For example, let’s store the animal’s weight in pounds in a variable.

weight_lb <- 2.2 * weight_kg

and then change weight_kg to 100.

weight_kg <- 100

What do you think is the current content of the object weight_lb? 126.5 or 220?

You can see what objects (variables) are stored by viewing the Environment tab in Rstudio. You can also use the ls() function. You can remove objects (variables) with the rm() function. You can do this one at a time or remove several objects at once. You can also use the little broom button in your environment pane to remove everything from your environment.

ls()
rm(weight_lb, weight_kg)
ls()
weight_lb # oops! you should get an error because weight_lb no longer exists!

Exercise 1

What are the values after each statement in the following?

mass <- 50 # mass?
age <- 30 # age?
mass <- mass * 2 # mass?
age <- age - 10 # age?
mass_index <- mass/age # massIndex?

1.3 Functions

R has built-in functions.

Notice that this is a comment.
Anything behind a # is "commented out" and is not run.
sqrt(144)

[1] 12

log(1000)

[1] 6.91

Get help by typing a question mark in front of the function’s name, or help(functionname):

help(log)
?log

Note syntax highlighting when typing this into the editor. Also note how we pass arguments to functions. The base= part inside the parentheses is called an argument, and most functions use arguments. Arguments modify the behavior of the function. Functions some input (e.g., some data, an object) and other options to change what the function will return, or how to treat the data provided. Finally, see how you can next one function inside of another (here taking the square root of the log-base-10 of 1000).

log(1000)

[1] 6.91

log(1000, base=10)

[1] 3

log(1000, 10)

[1] 3

sqrt(log(1000, base=10))

[1] 1.73

Exercise 2

See ?abs and calculate the square root of the log-base-10 of the absolute value of -4*(2550-50). Answer should be 2.

1.4 Tibbles (data frames)

There are lots of different basic data structures in R. If you take any kind of longer introduction to R you’ll probably learn about arrays, lists, matrices, etc. We are going to skip straight to the data structure you’ll probably use most – the tibble (also known as the data frame). We use tibbles to store heterogeneous tabular data in R: tabular, meaning that individuals or observations are typically represented in rows, while variables or features are represented as columns; heterogeneous, meaning that columns/features/variables can be different classes (on variable, e.g. age, can be numeric, while another, e.g., cause of death, can be text).

We’ll learn more about tibbles in Chapter 2.

2 Tibbles

There are lots of different basic data structures in R. If you take any kind of longer introduction to R you’ll probably learn about arrays, lists, matrices, etc. Let’s skip straight to the data structure you’ll probably use most – the data frame. We use data frames to store heterogeneous tabular data in R: tabular, meaning that individuals or observations are typically represented in rows, while variables or features are represented as columns; heterogeneous, meaning that columns/features/variables can be different classes (on variable, e.g. age, can be numeric, while another, e.g., cause of death, can be text).

This chapter assumes a basic familiarity with R (see Chapter 1).

Recommended reading: Review the Introduction (10.1) and Tibbles vs. data.frame (10.3) sections of the R for Data Science book. We will initially be using the read_* functions from the readr package. These functions load data into a tibble instead of R’s traditional data.frame. Tibbles are data frames, but they tweak some older behaviors to make life a little easier. These sections explain the few key small differences between traditional data.frames and tibbles.

2.1 Our data

The data we’re going to look at is cleaned up version of a gene expression dataset from Brauer et al. Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast (2008) Mol Biol Cell 19:352-367. This data is from a gene expression microarray, and in this paper the authors are examining the relationship between growth rate and gene expression in yeast cultures limited by one of six different nutrients (glucose, leucine, ammonium, sulfate, phosphate, uracil). If you give yeast a rich media loaded with nutrients except restrict the supply of a single nutrient, you can control the growth rate to any rate you choose. By starving yeast of specific nutrients you can find genes that:

	Raise or lower their expression in response to growth rate. Growth-rate dependent expression patterns can tell us a lot about cell cycle control, and how the cell responds to stress. The authors found that expression of >25% of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. They also found that the subset of negatively growth-correlated genes is enriched for peroxisomal functions, and positively correlated genes mainly encode ribosomal functions.

	Respond differently when different nutrients are being limited. If you see particular genes that respond very differently when a nutrient is sharply restricted, these genes might be involved in the transport or metabolism of that specific nutrient.

You can download the cleaned up version of the data here. The file is called brauer2007_tidy.csv. Later on we’ll actually start with the original raw data (minimally processed) and manipulate it so that we can make it more amenable for analysis.

2.2 Reading in data

2.2.1 dplyr and readr

There are some built-in functions for reading in data in text files. These functions are read-dot-something – for example, read.csv() reads in comma-delimited text data; read.delim() reads in tab-delimited text, etc. We’re going to read in data a little bit differently here using the readr package. When you load the readr package, you’ll have access to very similar looking functions, named read-underscore-something – e.g., read_csv(). You have to have the readr package installed to access these functions. Compared to the base functions, they’re much faster, they’re good at guessing the types of data in the columns, they don’t do some of the other silly things that the base functions do. We’re going to use another package later on called dplyr, and if you have the dplyr package loaded as well, and you read in the data with readr, the data will display nicely.

First let’s load those packages.

library(readr)
library(dplyr)

If you see a warning that looks like this: Error in library(packageName) : there is no package called 'packageName', then you don’t have the package installed correctly. See the setup chapter (Appendix A).

2.2.2 read_csv()

Now, let’s actually load the data. You can get help for the import function with ?read_csv. When we load data we assign it to a variable just like any other, and we can choose a name for that data. Since we’re going to be referring to this data a lot, let’s give it a short easy name to type. I’m going to call it ydat. Once we’ve loaded it we can type the name of the object itself (ydat) to see it printed to the screen.

ydat <- read_csv(file="data/brauer2007_tidy.csv")
ydat

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

Take a look at that output. The nice thing about loading dplyr and reading in data with readr is that data frames are displayed in a much more friendly way. This dataset has nearly 200,000 rows and 7 columns. When you import data this way and try to display the object in the console, instead of trying to display all 200,000 rows, you’ll only see about 10 by default. Also, if you have so many columns that the data would wrap off the edge of your screen, those columns will not be displayed, but you’ll see at the bottom of the output which, if any, columns were hidden from view. If you want to see the whole dataset, there are two ways to do this. First, you can click on the name of the data.frame in the Environment panel in RStudio. Or you could use the View() function (with a capital V).

View(ydat)

2.3 Inspecting data.frame objects

2.3.1 Built-in functions

There are several built-in functions that are useful for working with data frames.

	Content:

	head(): shows the first few rows

	tail(): shows the last few rows

	Size:

	dim(): returns a 2-element vector with the number of rows in the first element, and the number of columns as the second element (the dimensions of the object)

	nrow(): returns the number of rows

	ncol(): returns the number of columns

	Summary:

	colnames() (or just names()): returns the column names

	str(): structure of the object and information about the class, length and content of each column

	summary(): works differently depending on what kind of object you pass to it. Passing a data frame to the summary() function prints out useful summary statistics about numeric column (min, max, median, mean, etc.)

head(ydat)

A tibble: 6 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
2 <NA> YNL095C Glucose 0.05 0.28 biological process unk… mole…
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and peptid… meta…
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylation* RNA …
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
6 PSP2 YML017W Glucose 0.05 -0.69 biological process unk… mole…

tail(ydat)

A tibble: 6 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 DOA1 YKL213C Uracil 0.3 0.14 ubiquitin-dependent pr… mole…
2 KRE1 YNL322C Uracil 0.3 0.28 cell wall organization… stru…
3 MTL1 YGR023W Uracil 0.3 0.27 cell wall organization… mole…
4 KRE9 YJL174W Uracil 0.3 0.43 cell wall organization… mole…
5 UTH1 YKR042W Uracil 0.3 0.19 mitochondrion organiza… mole…
6 <NA> YOL111C Uracil 0.3 0.04 biological process unk… mole…

dim(ydat)

[1] 198430 7

names(ydat)

[1] "symbol" "systematic_name" "nutrient" "rate"
[5] "expression" "bp" "mf"

str(ydat)

spc_tbl_ [198,430 × 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ symbol : chr [1:198430] "SFB2" NA "QRI7" "CFT2" ...
 $ systematic_name: chr [1:198430] "YNL049C" "YNL095C" "YDL104C" "YLR115W" ...
 $ nutrient : chr [1:198430] "Glucose" "Glucose" "Glucose" "Glucose" ...
 $ rate : num [1:198430] 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 ...
 $ expression : num [1:198430] -0.24 0.28 -0.02 -0.33 0.05 -0.69 -0.55 -0.75 -0.24 -0.16 ...
 $ bp : chr [1:198430] "ER to Golgi transport" "biological process unknown" "proteolysis and peptidolysis" "mRNA polyadenylylation*" ...
 $ mf : chr [1:198430] "molecular function unknown" "molecular function unknown" "metalloendopeptidase activity" "RNA binding" ...
 - attr(*, "spec")=
 .. cols(
 .. symbol = col_character(),
 .. systematic_name = col_character(),
 .. nutrient = col_character(),
 .. rate = col_double(),
 .. expression = col_double(),
 .. bp = col_character(),
 .. mf = col_character()
 ..)
 - attr(*, "problems")=<externalptr>

summary(ydat)

 symbol systematic_name nutrient rate
 Length:198430 Length:198430 Length:198430 Min. :0.050
 Class :character Class :character Class :character 1st Qu.:0.100
 Mode :character Mode :character Mode :character Median :0.200
 Mean :0.175
 3rd Qu.:0.250
 Max. :0.300
 expression bp mf
 Min. :-6.50 Length:198430 Length:198430
 1st Qu.:-0.29 Class :character Class :character
 Median : 0.00 Mode :character Mode :character
 Mean : 0.00
 3rd Qu.: 0.29
 Max. : 6.64

2.3.2 Other packages

The glimpse() function is available once you load the dplyr library, and it’s like str() but its display is a little bit better.

glimpse(ydat)

Rows: 198,430
Columns: 7
$ symbol <chr> "SFB2", NA, "QRI7", "CFT2", "SSO2", "PSP2", "RIB2", "V…
$ systematic_name <chr> "YNL049C", "YNL095C", "YDL104C", "YLR115W", "YMR183C",…
$ nutrient <chr> "Glucose", "Glucose", "Glucose", "Glucose", "Glucose",…
$ rate <dbl> 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, …
$ expression <dbl> -0.24, 0.28, -0.02, -0.33, 0.05, -0.69, -0.55, -0.75, …
$ bp <chr> "ER to Golgi transport", "biological process unknown",…
$ mf <chr> "molecular function unknown", "molecular function unkn…

The skimr package has a nice function, skim, that provides summary statistics the user can skim quickly to understand your data. You can install it with install.packages("skimr") if you don’t have it already.

library(skimr)
skim(ydat)

Data summary

	Name
	ydat

	Number of rows
	198430

	Number of columns
	7

	Column type frequency:
	

	character
	5

	numeric
	2

	Group variables
	None

Variable type: character

	skim_variable
	n_missing
	complete_rate
	min
	max
	empty
	n_unique
	whitespace

	symbol
	47250
	0.76
	2
	9
	0
	4210
	0

	systematic_name
	0
	1.00
	5
	9
	0
	5536
	0

	nutrient
	0
	1.00
	6
	9
	0
	6
	0

	bp
	7663
	0.96
	7
	82
	0
	880
	0

	mf
	7663
	0.96
	11
	125
	0
	1085
	0

Variable type: numeric

	skim_variable
	n_missing
	complete_rate
	mean
	sd
	p0
	p25
	p50
	p75
	p100
	hist

	rate
	0
	1
	0.18
	0.09
	0.05
	0.10
	0.2
	0.25
	0.30
	▇▅▅▅▅

	expression
	0
	1
	0.00
	0.67
	-6.50
	-0.29
	0.0
	0.29
	6.64
	▁▁▇▁▁

2.4 Accessing variables & subsetting data frames

We can access individual variables within a data frame using the $ operator, e.g., mydataframe$specificVariable. Let’s print out all the gene names in the data. Then let’s calculate the average expression across all conditions, all genes (using the built-in mean() function).

display all gene symbols
ydat$symbol

 [1] "SFB2" NA "QRI7" "CFT2" "SSO2" "PSP2"
 [7] "RIB2" "VMA13" "EDC3" "VPS5" NA "AMN1"
 [13] "SCW11" "DSE2" "COX15" "SPE1" "MTF1" "KSS1"
 [19] NA NA "YAP7" NA "YVC1" "CDC40"
 [25] NA "RMD1" "PCL6" "AI4" "GGC1" "SUL1"
 [31] "RAD57" NA "PER1" "YHC3" "SGE1" "HNM1"
 [37] "SWI1" "NAM8" NA "BGL2" "ACT1" NA
 [43] "SFL1" "OYE3" "MMP1" "MHT1" "SUL2" "IPP1"
 [49] "CWP1" "SNF11" "PEX25" "ELO1" NA "CDC13"
 [55] "FKH1" "SWD1" NA "HOF1" "HOC1" "BNI5"
 [61] "CSN12" "PGS1" "MLP2" "HRP1" NA "SEC39"
 [67] "ECM31" NA NA "ADE4" "ABC1" "DLD2"
 [73] "PHA2" NA "HAP3" "MRPL23" NA NA
 [79] "MRPL16" NA NA NA NA "AI3"
 [85] "COX1" NA "VAR1" "COX3" "COX2" "AI5_BETA"
 [91] "AI2" NA NA "GPI18" "COS9" NA
 [97] NA "PRP46" "XDJ1" "SLG1" "MAM3" "AEP1"
[103] "UGO1" NA "RSC2" "YAP1801" "ZPR1" "BCD1"
[109] "UBP10" "SLD3" "RLF2" "LRO1" NA "ITR2"
[115] "ABP140" "STT3" "PTC2" "STE20" "HRD3" "CWH43"
[121] "ASK10" "MPE1" "SWC3" "TSA1" "ADE17" "GFD2"
[127] "PXR1" NA "BUD14" "AUS1" "NHX1" "NTE1"
[133] NA "KIN3" "BUD4" "SLI15" "PMT4" "AVT5"
[139] "CHS2" "GPI13" "KAP95" "EFT2" "EFT1" "GAS1"
[145] "CYK3" "COQ2" "PSD1" NA "PAC1" "SUR7"
[151] "RAX1" "DFM1" "RBD2" NA "YIP4" "SRB2"
[157] "HOL1" "MEP3" NA "FEN2" NA "RFT1"
[163] NA "MCK1" "GPI10" "APT1" NA NA
[169] "CPT1" "ERV29" "SFK1" NA "SEC20" "TIR4"
[175] NA NA "ARC35" "SOL1" "BIO2" "ASC1"
[181] "RBG1" "PTC4" NA "OXA1" "SIT4" "PUB1"
[187] "FPR4" "FUN12" "DPH2" "DPS1" "DLD1" "ASN2"
[193] "TRM9" "DED81" "SRM1" "SAM50" "POP2" "FAA4"
[199] NA "CEM1"
 [reached getOption("max.print") -- omitted 198230 entries]

#mean expression
mean(ydat$expression)

[1] 0.00337

Now that’s not too interesting. This is the average gene expression across all genes, across all conditions. The data is actually scaled/centered around zero:

We might be interested in the average expression of genes with a particular biological function, and how that changes over different growth rates restricted by particular nutrients. This is the kind of thing we’re going to do in the next section.

Exercise 1

	What’s the standard deviation expression (hint: get help on the sd function with ?sd).

	What’s the range of rate represented in the data? (hint: range()).

2.5 BONUS: Preview to advanced manipulation

What if we wanted show the mean expression, standard deviation, and correlation between growth rate and expression, separately for each limiting nutrient, separately for each gene, for all genes involved in the leucine biosynthesis pathway?

ydat |>
 filter(bp=="leucine biosynthesis") |>
 group_by(nutrient, symbol) |>
 summarize(mean=mean(expression), sd=sd(expression), r=cor(rate, expression))

	nutrient
	symbol
	mean
	sd
	r

	Ammonia
	LEU1
	-0.82
	0.39
	0.66

	Ammonia
	LEU2
	-0.54
	0.38
	-0.19

	Ammonia
	LEU4
	-0.37
	0.56
	-0.67

	Ammonia
	LEU9
	-1.01
	0.64
	0.87

	Glucose
	LEU1
	-0.55
	0.41
	0.98

	Glucose
	LEU2
	-0.39
	0.33
	0.90

	Glucose
	LEU4
	1.09
	1.01
	-0.97

	Glucose
	LEU9
	-0.17
	0.35
	0.35

	Leucine
	LEU1
	2.70
	1.08
	-0.95

	Leucine
	LEU2
	0.28
	1.16
	-0.97

	Leucine
	LEU4
	0.80
	1.06
	-0.97

	Leucine
	LEU9
	0.39
	0.18
	-0.77

	Phosphate
	LEU1
	-0.43
	0.27
	0.95

	Phosphate
	LEU2
	-0.26
	0.19
	0.70

	Phosphate
	LEU4
	-0.99
	0.11
	0.24

	Phosphate
	LEU9
	-1.12
	0.53
	0.90

	Sulfate
	LEU1
	-1.17
	0.34
	0.98

	Sulfate
	LEU2
	-0.96
	0.30
	0.57

	Sulfate
	LEU4
	-0.24
	0.43
	-0.60

	Sulfate
	LEU9
	-1.24
	0.55
	0.99

	Uracil
	LEU1
	-0.74
	0.73
	0.89

	Uracil
	LEU2
	0.18
	0.13
	-0.07

	Uracil
	LEU4
	-0.65
	0.44
	0.77

	Uracil
	LEU9
	-1.02
	0.91
	0.94

Neat eh? We’ll learn how to do that in the advanced manipulation with dplyr section (Chapter 3).

3 Data Manipulation with dplyr

Data analysis involves a large amount of janitor work – munging and cleaning data to facilitate downstream data analysis. This chapter demonstrates techniques for advanced data manipulation and analysis with the split-apply-combine strategy. We will use the dplyr package in R to effectively manipulate and conditionally compute summary statistics over subsets of a “big” dataset containing many observations.

This chapter assumes a basic familiarity with R (Chapter 1) and data frames (Chapter 2).

Recommended reading: Review the Introduction (10.1) and Tibbles vs. data.frame (10.3) sections of the R for Data Science book. We will initially be using the read_* functions from the readr package. These functions load data into a tibble instead of R’s traditional data.frame. Tibbles are data frames, but they tweak some older behaviors to make life a little easier. These sections explain the few key small differences between traditional data.frames and tibbles.

3.1 Review

3.1.1 Our data

We’re going to use the yeast gene expression dataset described on the data frames chapter in Chapter 2. This is a cleaned up version of a gene expression dataset from Brauer et al. Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast (2008) Mol Biol Cell 19:352-367. This data is from a gene expression microarray, and in this paper the authors are examining the relationship between growth rate and gene expression in yeast cultures limited by one of six different nutrients (glucose, leucine, ammonium, sulfate, phosphate, uracil). If you give yeast a rich media loaded with nutrients except restrict the supply of a single nutrient, you can control the growth rate to any rate you choose. By starving yeast of specific nutrients you can find genes that:

	Raise or lower their expression in response to growth rate. Growth-rate dependent expression patterns can tell us a lot about cell cycle control, and how the cell responds to stress. The authors found that expression of >25% of all yeast genes is linearly correlated with growth rate, independent of the limiting nutrient. They also found that the subset of negatively growth-correlated genes is enriched for peroxisomal functions, and positively correlated genes mainly encode ribosomal functions.

	Respond differently when different nutrients are being limited. If you see particular genes that respond very differently when a nutrient is sharply restricted, these genes might be involved in the transport or metabolism of that specific nutrient.

You can download the cleaned up version of the data here. The file is called brauer2007_tidy.csv. Later on we’ll actually start with the original raw data (minimally processed) and manipulate it so that we can make it more amenable for analysis.

3.1.2 Reading in data

We need to load both the dplyr and readr packages for efficiently reading in and displaying this data. We’re also going to use many other functions from the dplyr package. Make sure you have these packages installed as described on the setup chapter (Appendix A).

Load packages
library(readr)
library(dplyr)

Read in data
ydat <- read_csv(file="data/brauer2007_tidy.csv")

Display the data
ydat

Optionally, bring up the data in a viewer window
View(ydat)

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

3.2 The dplyr package

The dplyr package is a relatively new R package that makes data manipulation fast and easy. It imports functionality from another package called magrittr that allows you to chain commands together into a pipeline that will completely change the way you write R code such that you’re writing code the way you’re thinking about the problem.

When you read in data with the readr package (read_csv()) and you had the dplyr package loaded already, the data frame takes on this “special” class of data frames called a tbl (pronounced “tibble”), which you can see with class(ydat). If you have other “regular” data frames in your workspace, the as_tibble() function will convert it into the special dplyr tbl that displays nicely (e.g.: iris <- as_tibble(iris)). You don’t have to turn all your data frame objects into tibbles, but it does make working with large datasets a bit easier.

You can read more about tibbles in Tibbles chapter in R for Data Science or in the tibbles vignette. They keep most of the features of data frames, and drop the features that used to be convenient but are now frustrating (i.e. converting character vectors to factors). You can read more about the differences between data frames and tibbles in this section of the tibbles vignette, but the major convenience for us concerns printing (aka displaying) a tibble to the screen. When you print (i.e., display) a tibble, it only shows the first 10 rows and all the columns that fit on one screen. It also prints an abbreviated description of the column type. You can control the default appearance with options:

	options(tibble.print_max = n, tibble.print_min = m): if there are more than n rows, print only the first m rows. Use options(tibble.print_max = Inf) to always show all rows.

	options(tibble.width = Inf) will always print all columns, regardless of the width of the screen.

3.3 dplyr verbs

The dplyr package gives you a handful of useful verbs for managing data. On their own they don’t do anything that base R can’t do. Here are some of the single-table verbs we’ll be working with in this chapter (single-table meaning that they only work on a single table – contrast that to two-table verbs used for joining data together, which we’ll cover in a later chapter).

	filter()

	select()

	mutate()

	arrange()

	summarize()

	group_by()

They all take a data frame or tibble as their input for the first argument, and they all return a data frame or tibble as output.

3.3.1 filter()

If you want to filter rows of the data where some condition is true, use the filter() function.

	The first argument is the data frame you want to filter, e.g. filter(mydata,

	The second argument is a condition you must satisfy, e.g. filter(ydat, symbol == "LEU1"). If you want to satisfy all of multiple conditions, you can use the “and” operator, &. The “or” operator | (the pipe character, usually shift-backslash) will return a subset that meet any of the conditions.

	==: Equal to

	!=: Not equal to

	>, >=: Greater than, greater than or equal to

	<, <=: Less than, less than or equal to

Let’s try it out. For this to work you have to have already loaded the dplyr package. Let’s take a look at LEU1, a gene involved in leucine synthesis.

First, make sure you've loaded the dplyr package
library(dplyr)

Look at a single gene involved in leucine synthesis pathway
filter(ydat, symbol == "LEU1")

A tibble: 36 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isop…
 2 LEU1 YGL009C Glucose 0.1 -0.77 leucine biosynthesis 3-isop…
 3 LEU1 YGL009C Glucose 0.15 -0.67 leucine biosynthesis 3-isop…
 4 LEU1 YGL009C Glucose 0.2 -0.59 leucine biosynthesis 3-isop…
 5 LEU1 YGL009C Glucose 0.25 -0.2 leucine biosynthesis 3-isop…
 6 LEU1 YGL009C Glucose 0.3 0.03 leucine biosynthesis 3-isop…
 7 LEU1 YGL009C Ammonia 0.05 -0.76 leucine biosynthesis 3-isop…
 8 LEU1 YGL009C Ammonia 0.1 -1.17 leucine biosynthesis 3-isop…
 9 LEU1 YGL009C Ammonia 0.15 -1.2 leucine biosynthesis 3-isop…
10 LEU1 YGL009C Ammonia 0.2 -1.02 leucine biosynthesis 3-isop…
ℹ 26 more rows

Optionally, bring that result up in a View window
View(filter(ydat, symbol == "LEU1"))

Look at multiple genes
filter(ydat, symbol=="LEU1" | symbol=="ADH2")

A tibble: 72 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isop…
 2 ADH2 YMR303C Glucose 0.05 6.28 fermentation* alcoho…
 3 LEU1 YGL009C Glucose 0.1 -0.77 leucine biosynthesis 3-isop…
 4 ADH2 YMR303C Glucose 0.1 5.81 fermentation* alcoho…
 5 LEU1 YGL009C Glucose 0.15 -0.67 leucine biosynthesis 3-isop…
 6 ADH2 YMR303C Glucose 0.15 5.64 fermentation* alcoho…
 7 LEU1 YGL009C Glucose 0.2 -0.59 leucine biosynthesis 3-isop…
 8 ADH2 YMR303C Glucose 0.2 5.1 fermentation* alcoho…
 9 LEU1 YGL009C Glucose 0.25 -0.2 leucine biosynthesis 3-isop…
10 ADH2 YMR303C Glucose 0.25 1.89 fermentation* alcoho…
ℹ 62 more rows

Look at LEU1 expression at a low growth rate due to nutrient depletion
Notice how LEU1 is highly upregulated when leucine is depleted!
filter(ydat, symbol=="LEU1" & rate==.05)

A tibble: 6 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isop…
2 LEU1 YGL009C Ammonia 0.05 -0.76 leucine biosynthesis 3-isop…
3 LEU1 YGL009C Phosphate 0.05 -0.81 leucine biosynthesis 3-isop…
4 LEU1 YGL009C Sulfate 0.05 -1.57 leucine biosynthesis 3-isop…
5 LEU1 YGL009C Leucine 0.05 3.84 leucine biosynthesis 3-isop…
6 LEU1 YGL009C Uracil 0.05 -2.07 leucine biosynthesis 3-isop…

But expression goes back down when the growth/nutrient restriction is relaxed
filter(ydat, symbol=="LEU1" & rate==.3)

A tibble: 6 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 LEU1 YGL009C Glucose 0.3 0.03 leucine biosynthesis 3-isop…
2 LEU1 YGL009C Ammonia 0.3 -0.22 leucine biosynthesis 3-isop…
3 LEU1 YGL009C Phosphate 0.3 -0.07 leucine biosynthesis 3-isop…
4 LEU1 YGL009C Sulfate 0.3 -0.76 leucine biosynthesis 3-isop…
5 LEU1 YGL009C Leucine 0.3 0.87 leucine biosynthesis 3-isop…
6 LEU1 YGL009C Uracil 0.3 -0.16 leucine biosynthesis 3-isop…

Show only stats for LEU1 and Leucine depletion.
LEU1 expression starts off high and drops
filter(ydat, symbol=="LEU1" & nutrient=="Leucine")

A tibble: 6 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 LEU1 YGL009C Leucine 0.05 3.84 leucine biosynthesis 3-isopr…
2 LEU1 YGL009C Leucine 0.1 3.36 leucine biosynthesis 3-isopr…
3 LEU1 YGL009C Leucine 0.15 3.24 leucine biosynthesis 3-isopr…
4 LEU1 YGL009C Leucine 0.2 2.84 leucine biosynthesis 3-isopr…
5 LEU1 YGL009C Leucine 0.25 2.04 leucine biosynthesis 3-isopr…
6 LEU1 YGL009C Leucine 0.3 0.87 leucine biosynthesis 3-isopr…

What about LEU1 expression with other nutrients being depleted?
filter(ydat, symbol=="LEU1" & nutrient=="Glucose")

A tibble: 6 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isopr…
2 LEU1 YGL009C Glucose 0.1 -0.77 leucine biosynthesis 3-isopr…
3 LEU1 YGL009C Glucose 0.15 -0.67 leucine biosynthesis 3-isopr…
4 LEU1 YGL009C Glucose 0.2 -0.59 leucine biosynthesis 3-isopr…
5 LEU1 YGL009C Glucose 0.25 -0.2 leucine biosynthesis 3-isopr…
6 LEU1 YGL009C Glucose 0.3 0.03 leucine biosynthesis 3-isopr…

Let’s look at this graphically. Don’t worry about what these commands are doing just yet - we’ll cover that later on when we talk about ggplot2. Here’s I’m taking the filtered dataset containing just expression estimates for LEU1 where I have 36 rows (one for each of 6 nutrients ×\times 6 growth rates), and I’m piping that dataset to the plotting function, where I’m plotting rate on the x-axis, expression on the y-axis, mapping the value of nutrient to the color, and using a line plot to display the data.

library(ggplot2)
filter(ydat, symbol=="LEU1") |>
 ggplot(aes(rate, expression, colour=nutrient)) + geom_line(lwd=1.5)

Look closely at that! LEU1 is highly expressed when starved of leucine because the cell has to synthesize its own! And as the amount of leucine in the environment (the growth rate) increases, the cell can worry less about synthesizing leucine, so LEU1 expression goes back down. Consequently the cell can devote more energy into other functions, and we see other genes’ expression very slightly raising.

Exercise 1

	Display the data where the gene ontology biological process (the bp variable) is “leucine biosynthesis” (case-sensitive) and the limiting nutrient was Leucine. (Answer should return a 24-by-7 data frame – 4 genes ×\times 6 growth rates).

	Gene/rate combinations had high expression (in the top 1% of expressed genes)? Hint: see ?quantile and try quantile(ydat$expression, probs=.99) to see the expression value which is higher than 99% of all the data, then filter() based on that. Try wrapping your answer with a View() function so you can see the whole thing. What does it look like those genes are doing? Answer should return a 1971-by-7 data frame.

3.3.1.1 Aside: Writing Data to File

What we’ve done up to this point is read in data from a file (read_csv(...)), and assigning that to an object in our workspace (ydat <- ...). When we run operations like filter() on our data, consider two things:

	The ydat object in our workspace is not being modified directly. That is, we can filter(ydat, ...), and a result is returned to the screen, but ydat remains the same. This effect is similar to what we demonstrated in our first session.

Assign the value '50' to the weight object.
weight <- 50

Print out weight to the screen (50)
weight

What's the value of weight plus 10?
weight + 10

Weight is still 50
weight

Weight is only modified if we *reassign* weight to the modified value
weight <- weight+10
Weight is now 60
weight

	More importantly, the data file on disk (data/brauer2007_tidy.csv) is never modified. No matter what we do to ydat, the file is never modified. If we want to save the result of an operation to a file on disk, we can assign the result of an operation to an object, and write_csv that object to disk. See the help for ?write_csv (note, write_csv() with an underscore is part of the readr package – not to be confused with the built-in write.csv() function).

What's the result of this filter operation?
filter(ydat, nutrient=="Leucine" & bp=="leucine biosynthesis")

Assign the result to a new object
leudat <- filter(ydat, nutrient=="Leucine" & bp=="leucine biosynthesis")

Write that out to disk
write_csv(leudat, "leucinedata.csv")

Note that this is different than saving your entire workspace to an Rdata file, which would contain all the objects we’ve created (weight, ydat, leudat, etc).

3.3.2 select()

The filter() function allows you to return only certain rows matching a condition. The select() function returns only certain columns. The first argument is the data, and subsequent arguments are the columns you want.

Select just the symbol and systematic_name
select(ydat, symbol, systematic_name)

A tibble: 198,430 × 2
 symbol systematic_name
 <chr> <chr>
 1 SFB2 YNL049C
 2 <NA> YNL095C
 3 QRI7 YDL104C
 4 CFT2 YLR115W
 5 SSO2 YMR183C
 6 PSP2 YML017W
 7 RIB2 YOL066C
 8 VMA13 YPR036W
 9 EDC3 YEL015W
10 VPS5 YOR069W
ℹ 198,420 more rows

Alternatively, just remove columns. Remove the bp and mf columns.
select(ydat, -bp, -mf)

A tibble: 198,430 × 5
 symbol systematic_name nutrient rate expression
 <chr> <chr> <chr> <dbl> <dbl>
 1 SFB2 YNL049C Glucose 0.05 -0.24
 2 <NA> YNL095C Glucose 0.05 0.28
 3 QRI7 YDL104C Glucose 0.05 -0.02
 4 CFT2 YLR115W Glucose 0.05 -0.33
 5 SSO2 YMR183C Glucose 0.05 0.05
 6 PSP2 YML017W Glucose 0.05 -0.69
 7 RIB2 YOL066C Glucose 0.05 -0.55
 8 VMA13 YPR036W Glucose 0.05 -0.75
 9 EDC3 YEL015W Glucose 0.05 -0.24
10 VPS5 YOR069W Glucose 0.05 -0.16
ℹ 198,420 more rows

Notice that the original data doesn't change!
ydat

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

Notice above how the original data doesn’t change. We’re selecting out only certain columns of interest and throwing away columns we don’t care about. If we wanted to keep this data, we would need to reassign the result of the select() operation to a new object. Let’s make a new object called nogo that does not contain the GO annotations. Notice again how the original data is unchanged.

create a new dataset without the go annotations.
nogo <- select(ydat, -bp, -mf)
nogo

A tibble: 198,430 × 5
 symbol systematic_name nutrient rate expression
 <chr> <chr> <chr> <dbl> <dbl>
 1 SFB2 YNL049C Glucose 0.05 -0.24
 2 <NA> YNL095C Glucose 0.05 0.28
 3 QRI7 YDL104C Glucose 0.05 -0.02
 4 CFT2 YLR115W Glucose 0.05 -0.33
 5 SSO2 YMR183C Glucose 0.05 0.05
 6 PSP2 YML017W Glucose 0.05 -0.69
 7 RIB2 YOL066C Glucose 0.05 -0.55
 8 VMA13 YPR036W Glucose 0.05 -0.75
 9 EDC3 YEL015W Glucose 0.05 -0.24
10 VPS5 YOR069W Glucose 0.05 -0.16
ℹ 198,420 more rows

we could filter this new dataset
filter(nogo, symbol=="LEU1" & rate==.05)

A tibble: 6 × 5
 symbol systematic_name nutrient rate expression
 <chr> <chr> <chr> <dbl> <dbl>
1 LEU1 YGL009C Glucose 0.05 -1.12
2 LEU1 YGL009C Ammonia 0.05 -0.76
3 LEU1 YGL009C Phosphate 0.05 -0.81
4 LEU1 YGL009C Sulfate 0.05 -1.57
5 LEU1 YGL009C Leucine 0.05 3.84
6 LEU1 YGL009C Uracil 0.05 -2.07

Notice how the original data is unchanged - still have all 7 columns
ydat

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

3.3.3 mutate()

The mutate() function adds new columns to the data. Remember, it doesn’t actually modify the data frame you’re operating on, and the result is transient unless you assign it to a new object or reassign it back to itself (generally, not always a good practice).

The expression level reported here is the log2log_2 of the sample signal divided by the signal in the reference channel, where the reference RNA for all samples was taken from the glucose-limited chemostat grown at a dilution rate of 0.25 h−1h^{-1}. Let’s mutate this data to add a new variable called “signal” that’s the actual raw signal ratio instead of the log-transformed signal.

mutate(nogo, signal=2^expression)

Mutate has a nice little feature too in that it’s “lazy.” You can mutate and add one variable, then continue mutating to add more variables based on that variable. Let’s make another column that’s the square root of the signal ratio.

mutate(nogo, signal=2^expression, sigsr=sqrt(signal))

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression signal sigsr
 <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
 1 SFB2 YNL049C Glucose 0.05 -0.24 0.847 0.920
 2 <NA> YNL095C Glucose 0.05 0.28 1.21 1.10
 3 QRI7 YDL104C Glucose 0.05 -0.02 0.986 0.993
 4 CFT2 YLR115W Glucose 0.05 -0.33 0.796 0.892
 5 SSO2 YMR183C Glucose 0.05 0.05 1.04 1.02
 6 PSP2 YML017W Glucose 0.05 -0.69 0.620 0.787
 7 RIB2 YOL066C Glucose 0.05 -0.55 0.683 0.826
 8 VMA13 YPR036W Glucose 0.05 -0.75 0.595 0.771
 9 EDC3 YEL015W Glucose 0.05 -0.24 0.847 0.920
10 VPS5 YOR069W Glucose 0.05 -0.16 0.895 0.946
ℹ 198,420 more rows

Again, don’t worry about the code here to make the plot – we’ll learn about this later. Why do you think we log-transform the data prior to analysis?

library(tidyr)
mutate(nogo, signal=2^expression, sigsr=sqrt(signal)) |>
 gather(unit, value, expression:sigsr) |>
 ggplot(aes(value)) + geom_histogram(bins=100) + facet_wrap(~unit, scales="free")

3.3.4 arrange()

The arrange() function does what it sounds like. It takes a data frame or tbl and arranges (or sorts) by column(s) of interest. The first argument is the data, and subsequent arguments are columns to sort on. Use the desc() function to arrange by descending.

arrange by gene symbol
arrange(ydat, symbol)

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 AAC1 YMR056C Glucose 0.05 1.5 aerobic respiration* ATP:AD…
 2 AAC1 YMR056C Glucose 0.1 1.54 aerobic respiration* ATP:AD…
 3 AAC1 YMR056C Glucose 0.15 1.16 aerobic respiration* ATP:AD…
 4 AAC1 YMR056C Glucose 0.2 1.04 aerobic respiration* ATP:AD…
 5 AAC1 YMR056C Glucose 0.25 0.84 aerobic respiration* ATP:AD…
 6 AAC1 YMR056C Glucose 0.3 0.01 aerobic respiration* ATP:AD…
 7 AAC1 YMR056C Ammonia 0.05 0.8 aerobic respiration* ATP:AD…
 8 AAC1 YMR056C Ammonia 0.1 1.47 aerobic respiration* ATP:AD…
 9 AAC1 YMR056C Ammonia 0.15 0.97 aerobic respiration* ATP:AD…
10 AAC1 YMR056C Ammonia 0.2 0.76 aerobic respiration* ATP:AD…
ℹ 198,420 more rows

arrange by expression (default: increasing)
arrange(ydat, expression)

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SUL1 YBR294W Phosphate 0.05 -6.5 sulfate transport sulf…
 2 SUL1 YBR294W Phosphate 0.1 -6.34 sulfate transport sulf…
 3 ADH2 YMR303C Phosphate 0.1 -6.15 fermentation* alco…
 4 ADH2 YMR303C Phosphate 0.3 -6.04 fermentation* alco…
 5 ADH2 YMR303C Phosphate 0.25 -5.89 fermentation* alco…
 6 SUL1 YBR294W Uracil 0.05 -5.55 sulfate transport sulf…
 7 SFC1 YJR095W Phosphate 0.2 -5.52 fumarate transport* succ…
 8 JEN1 YKL217W Phosphate 0.3 -5.44 lactate transport lact…
 9 MHT1 YLL062C Phosphate 0.05 -5.36 sulfur amino acid me… homo…
10 SFC1 YJR095W Phosphate 0.25 -5.35 fumarate transport* succ…
ℹ 198,420 more rows

arrange by decreasing expression
arrange(ydat, desc(expression))

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 GAP1 YKR039W Ammonia 0.05 6.64 amino acid transport* L-pr…
 2 DAL5 YJR152W Ammonia 0.05 6.64 allantoate transport alla…
 3 GAP1 YKR039W Ammonia 0.1 6.64 amino acid transport* L-pr…
 4 DAL5 YJR152W Ammonia 0.1 6.64 allantoate transport alla…
 5 DAL5 YJR152W Ammonia 0.15 6.64 allantoate transport alla…
 6 DAL5 YJR152W Ammonia 0.2 6.64 allantoate transport alla…
 7 DAL5 YJR152W Ammonia 0.25 6.64 allantoate transport alla…
 8 DAL5 YJR152W Ammonia 0.3 6.64 allantoate transport alla…
 9 GIT1 YCR098C Phosphate 0.05 6.64 glycerophosphodieste… glyc…
10 PHM6 YDR281C Phosphate 0.05 6.64 biological process u… mole…
ℹ 198,420 more rows

Exercise 2

	First, re-run the command you used above to filter the data for genes involved in the “leucine biosynthesis” biological process and where the limiting nutrient is Leucine.

	Wrap this entire filtered result with a call to arrange() where you’ll arrange the result of #1 by the gene symbol.

	Wrap this entire result in a View() statement so you can see the entire result.

3.3.5 summarize()

The summarize() function summarizes multiple values to a single value. On its own the summarize() function doesn’t seem to be all that useful. The dplyr package provides a few convenience functions called n() and n_distinct() that tell you the number of observations or the number of distinct values of a particular variable.

Notice that summarize takes a data frame and returns a data frame. In this case it’s a 1x1 data frame with a single row and a single column. The name of the column, by default is whatever the expression was used to summarize the data. This usually isn’t pretty, and if we wanted to work with this resulting data frame later on, we’d want to name that returned value something easier to deal with.

Get the mean expression for all genes
summarize(ydat, mean(expression))

A tibble: 1 × 1
 `mean(expression)`
 <dbl>
1 0.00337

Use a more friendly name, e.g., meanexp, or whatever you want to call it.
summarize(ydat, meanexp=mean(expression))

A tibble: 1 × 1
 meanexp
 <dbl>
1 0.00337

Measure the correlation between rate and expression
summarize(ydat, r=cor(rate, expression))

A tibble: 1 × 1
 r
 <dbl>
1 -0.0220

Get the number of observations
summarize(ydat, n())

A tibble: 1 × 1
 `n()`
 <int>
1 198430

The number of distinct gene symbols in the data
summarize(ydat, n_distinct(symbol))

A tibble: 1 × 1
 `n_distinct(symbol)`
 <int>
1 4211

3.3.6 group_by()

We saw that summarize() isn’t that useful on its own. Neither is group_by() All this does is takes an existing data frame and coverts it into a grouped data frame where operations are performed by group.

ydat

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

group_by(ydat, nutrient)

A tibble: 198,430 × 7
Groups: nutrient [6]
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

group_by(ydat, nutrient, rate)

A tibble: 198,430 × 7
Groups: nutrient, rate [36]
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

The real power comes in where group_by() and summarize() are used together. First, write the group_by() statement. Then wrap the result of that with a call to summarize().

Get the mean expression for each gene
group_by(ydat, symbol)
summarize(group_by(ydat, symbol), meanexp=mean(expression))

A tibble: 4,211 × 2
 symbol meanexp
 <chr> <dbl>
 1 AAC1 0.529
 2 AAC3 -0.216
 3 AAD10 0.438
 4 AAD14 -0.0717
 5 AAD16 0.242
 6 AAD4 -0.792
 7 AAD6 0.290
 8 AAH1 0.0461
 9 AAP1 -0.00361
10 AAP1' -0.421
ℹ 4,201 more rows

Get the correlation between rate and expression for each nutrient
group_by(ydat, nutrient)
summarize(group_by(ydat, nutrient), r=cor(rate, expression))

A tibble: 6 × 2
 nutrient r
 <chr> <dbl>
1 Ammonia -0.0175
2 Glucose -0.0112
3 Leucine -0.0384
4 Phosphate -0.0194
5 Sulfate -0.0166
6 Uracil -0.0353

3.4 The pipe: |>

3.4.1 How |> works

This is where things get awesome. The dplyr package imports functionality from the magrittr package that lets you pipe the output of one function to the input of another, so you can avoid nesting functions. It looks like this: |>. You don’t have to load the magrittr package to use it since dplyr imports its functionality when you load the dplyr package.

Here’s the simplest way to use it. Remember the tail() function. It expects a data frame as input, and the next argument is the number of lines to print. These two commands are identical:

tail(ydat, 5)

A tibble: 5 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 KRE1 YNL322C Uracil 0.3 0.28 cell wall organization… stru…
2 MTL1 YGR023W Uracil 0.3 0.27 cell wall organization… mole…
3 KRE9 YJL174W Uracil 0.3 0.43 cell wall organization… mole…
4 UTH1 YKR042W Uracil 0.3 0.19 mitochondrion organiza… mole…
5 <NA> YOL111C Uracil 0.3 0.04 biological process unk… mole…

ydat |> tail(5)

A tibble: 5 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
1 KRE1 YNL322C Uracil 0.3 0.28 cell wall organization… stru…
2 MTL1 YGR023W Uracil 0.3 0.27 cell wall organization… mole…
3 KRE9 YJL174W Uracil 0.3 0.43 cell wall organization… mole…
4 UTH1 YKR042W Uracil 0.3 0.19 mitochondrion organiza… mole…
5 <NA> YOL111C Uracil 0.3 0.04 biological process unk… mole…

Let’s use one of the dplyr verbs.

filter(ydat, nutrient=="Leucine")

A tibble: 33,178 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Leucine 0.05 0.18 ER to Golgi transport mole…
 2 <NA> YNL095C Leucine 0.05 0.16 biological process un… mole…
 3 QRI7 YDL104C Leucine 0.05 -0.3 proteolysis and pepti… meta…
 4 CFT2 YLR115W Leucine 0.05 -0.27 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Leucine 0.05 -0.59 vesicle fusion* t-SN…
 6 PSP2 YML017W Leucine 0.05 -0.17 biological process un… mole…
 7 RIB2 YOL066C Leucine 0.05 -0.02 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Leucine 0.05 -0.11 vacuolar acidification hydr…
 9 EDC3 YEL015W Leucine 0.05 0.12 deadenylylation-indep… mole…
10 VPS5 YOR069W Leucine 0.05 -0.2 protein retention in … prot…
ℹ 33,168 more rows

ydat |> filter(nutrient=="Leucine")

A tibble: 33,178 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Leucine 0.05 0.18 ER to Golgi transport mole…
 2 <NA> YNL095C Leucine 0.05 0.16 biological process un… mole…
 3 QRI7 YDL104C Leucine 0.05 -0.3 proteolysis and pepti… meta…
 4 CFT2 YLR115W Leucine 0.05 -0.27 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Leucine 0.05 -0.59 vesicle fusion* t-SN…
 6 PSP2 YML017W Leucine 0.05 -0.17 biological process un… mole…
 7 RIB2 YOL066C Leucine 0.05 -0.02 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Leucine 0.05 -0.11 vacuolar acidification hydr…
 9 EDC3 YEL015W Leucine 0.05 0.12 deadenylylation-indep… mole…
10 VPS5 YOR069W Leucine 0.05 -0.2 protein retention in … prot…
ℹ 33,168 more rows

3.4.2 Nesting versus |>

So what?

Now, think about this for a minute. What if we wanted to get the correlation between the growth rate and expression separately for each limiting nutrient only for genes in the leucine biosynthesis pathway, and return a sorted list of those correlation coeffients rounded to two digits? Mentally we would do something like this:

	Take the ydat dataset

	then filter() it for genes in the leucine biosynthesis pathway

	then group_by() the limiting nutrient

	then summarize() to get the correlation (cor()) between rate and expression

	then mutate() to round the result of the above calculation to two significant digits

	then arrange() by the rounded correlation coefficient above

But in code, it gets ugly. First, take the ydat dataset

ydat

then filter() it for genes in the leucine biosynthesis pathway

filter(ydat, bp=="leucine biosynthesis")

then group_by() the limiting nutrient

group_by(filter(ydat, bp=="leucine biosynthesis"), nutrient)

then summarize() to get the correlation (cor()) between rate and expression

summarize(group_by(filter(ydat, bp == "leucine biosynthesis"), nutrient), r = cor(rate,
 expression))

then mutate() to round the result of the above calculation to two significant digits

mutate(summarize(group_by(filter(ydat, bp == "leucine biosynthesis"), nutrient),
 r = cor(rate, expression)), r = round(r, 2))

then arrange() by the rounded correlation coefficient above

arrange(
 mutate(
 summarize(
 group_by(
 filter(ydat, bp=="leucine biosynthesis"),
 nutrient),
 r=cor(rate, expression)),
 r=round(r, 2)),
r)

A tibble: 6 × 2
 nutrient r
 <chr> <dbl>
1 Leucine -0.58
2 Glucose -0.04
3 Ammonia 0.16
4 Sulfate 0.33
5 Phosphate 0.44
6 Uracil 0.58

Now compare that with the mental process of what you’re actually trying to accomplish. The way you would do this without pipes is completely inside-out and backwards from the way you express in words and in thought what you want to do. The pipe operator |> allows you to pass the output data frame from one function to the input data frame to another function.

Nesting functions versus piping

This is how we would do that in code. It’s as simple as replacing the word “then” in words to the symbol |> in code. (There’s a keyboard shortcut that I’ll use frequently to insert the |> sequence – you can see what it is by clicking the Tools menu in RStudio, then selecting Keyboard Shortcut Help. On Mac, it’s CMD-SHIFT-M.)

ydat |>
 filter(bp=="leucine biosynthesis") |>
 group_by(nutrient) |>
 summarize(r=cor(rate, expression)) |>
 mutate(r=round(r,2)) |>
 arrange(r)

A tibble: 6 × 2
 nutrient r
 <chr> <dbl>
1 Leucine -0.58
2 Glucose -0.04
3 Ammonia 0.16
4 Sulfate 0.33
5 Phosphate 0.44
6 Uracil 0.58

3.5 Exercises

Here’s a warm-up round. Try the following.

Exercise 3

Show the limiting nutrient and expression values for the gene ADH2 when the growth rate is restricted to 0.05. Hint: 2 pipes: filter and select.

A tibble: 6 × 2
 nutrient expression
 <chr> <dbl>
1 Glucose 6.28
2 Ammonia 0.55
3 Phosphate -4.6
4 Sulfate -1.18
5 Leucine 4.15
6 Uracil 0.63

Exercise 4

What are the four most highly expressed genes when the growth rate is restricted to 0.05 by restricting glucose? Show only the symbol, expression value, and GO terms. Hint: 4 pipes: filter, arrange, head, and select.

A tibble: 4 × 4
 symbol expression bp mf
 <chr> <dbl> <chr> <chr>
1 ADH2 6.28 fermentation* alcohol dehydrogenase activity
2 HSP26 5.86 response to stress* unfolded protein binding
3 MLS1 5.64 glyoxylate cycle malate synthase activity
4 HXT5 5.56 hexose transport glucose transporter activity*

Exercise 5

When the growth rate is restricted to 0.05, what is the average expression level across all genes in the “response to stress” biological process, separately for each limiting nutrient? What about genes in the “protein biosynthesis” biological process? Hint: 3 pipes: filter, group_by, summarize.

A tibble: 6 × 2
 nutrient meanexp
 <chr> <dbl>
1 Ammonia 0.943
2 Glucose 0.743
3 Leucine 0.811
4 Phosphate 0.981
5 Sulfate 0.743
6 Uracil 0.731

A tibble: 6 × 2
 nutrient meanexp
 <chr> <dbl>
1 Ammonia -1.61
2 Glucose -0.691
3 Leucine -0.574
4 Phosphate -0.750
5 Sulfate -0.913
6 Uracil -0.880

That was easy, right? How about some tougher ones.

Exercise 6

First, some review. How do we see the number of distinct values of a variable? Use n_distinct() within a summarize() call.

ydat |> summarize(n_distinct(mf))

A tibble: 1 × 1
 `n_distinct(mf)`
 <int>
1 1086

Exercise 7

Which 10 biological process annotations have the most genes associated with them? What about molecular functions? Hint: 4 pipes: group_by, summarize with n_distinct, arrange, head.

A tibble: 10 × 2
 bp n
 <chr> <int>
 1 biological process unknown 269
 2 protein biosynthesis 182
 3 protein amino acid phosphorylation* 78
 4 protein biosynthesis* 73
 5 cell wall organization and biogenesis* 64
 6 regulation of transcription from RNA polymerase II promoter* 49
 7 nuclear mRNA splicing, via spliceosome 47
 8 DNA repair* 44
 9 ER to Golgi transport* 42
10 aerobic respiration* 42

A tibble: 10 × 2
 mf n
 <chr> <int>
 1 molecular function unknown 886
 2 structural constituent of ribosome 185
 3 protein binding 107
 4 RNA binding 63
 5 protein binding* 53
 6 DNA binding* 44
 7 structural molecule activity 43
 8 GTPase activity 40
 9 structural constituent of cytoskeleton 39
10 transcription factor activity 38

Exercise 8

How many distinct genes are there where we know what process the gene is involved in but we don’t know what it does? Hint: 3 pipes; filter where bp!="biological process unknown" & mf=="molecular function unknown", and after selecting columns of interest, pipe the output to distinct(). The answer should be 737, and here are a few:

A tibble: 737 × 3
 symbol bp mf
 <chr> <chr> <chr>
 1 SFB2 ER to Golgi transport molec…
 2 EDC3 deadenylylation-independent decapping molec…
 3 PER1 response to unfolded protein* molec…
 4 PEX25 peroxisome organization and biogenesis* molec…
 5 BNI5 cytokinesis* molec…
 6 CSN12 adaptation to pheromone during conjugation with cellular fusion molec…
 7 SEC39 secretory pathway molec…
 8 ABC1 ubiquinone biosynthesis molec…
 9 PRP46 nuclear mRNA splicing, via spliceosome molec…
10 MAM3 mitochondrion organization and biogenesis* molec…
ℹ 727 more rows

Exercise 9

When the growth rate is restricted to 0.05 by limiting Glucose, which biological processes are the most upregulated? Show a sorted list with the most upregulated BPs on top, displaying the biological process and the average expression of all genes in that process rounded to two digits. Hint: 5 pipes: filter, group_by, summarize, mutate, arrange.

A tibble: 881 × 2
 bp meanexp
 <chr> <dbl>
 1 fermentation* 6.28
 2 glyoxylate cycle 5.28
 3 oxygen and reactive oxygen species metabolism 5.04
 4 fumarate transport* 5.03
 5 acetyl-CoA biosynthesis* 4.32
 6 gluconeogenesis 3.64
 7 fatty acid beta-oxidation 3.57
 8 lactate transport 3.48
 9 carnitine metabolism 3.3
10 alcohol metabolism* 3.25
ℹ 871 more rows

Exercise 10

Group the data by limiting nutrient (primarily) then by biological process. Get the average expression for all genes annotated with each process, separately for each limiting nutrient, where the growth rate is restricted to 0.05. Arrange the result to show the most upregulated processes on top. The initial result will look like the result below. Pipe this output to a View() statement. What’s going on? Why didn’t the arrange() work? Hint: 5 pipes: filter, group_by, summarize, arrange, View.

A tibble: 5,257 × 3
Groups: nutrient [6]
 nutrient bp meanexp
 <chr> <chr> <dbl>
 1 Ammonia allantoate transport 6.64
 2 Ammonia amino acid transport* 6.64
 3 Phosphate glycerophosphodiester transport 6.64
 4 Glucose fermentation* 6.28
 5 Ammonia allantoin transport 5.56
 6 Glucose glyoxylate cycle 5.28
 7 Ammonia proline catabolism* 5.14
 8 Ammonia urea transport 5.14
 9 Glucose oxygen and reactive oxygen species metabolism 5.04
10 Glucose fumarate transport* 5.03
ℹ 5,247 more rows

Exercise 11

Let’s try to further process that result to get only the top three most upregulated biolgocal processes for each limiting nutrient. Google search “dplyr first result within group.” You’ll need a filter(row_number()......) in there somewhere. Hint: 5 pipes: filter, group_by, summarize, arrange, filter(row_number().... Note: dplyr’s pipe syntax used to be %.% before it changed to |>. So when looking around, you might still see some people use the old syntax. Now if you try to use the old syntax, you’ll get a deprecation warning.

A tibble: 18 × 3
Groups: nutrient [6]
 nutrient bp meanexp
 <chr> <chr> <dbl>
 1 Ammonia allantoate transport 6.64
 2 Ammonia amino acid transport* 6.64
 3 Phosphate glycerophosphodiester transport 6.64
 4 Glucose fermentation* 6.28
 5 Ammonia allantoin transport 5.56
 6 Glucose glyoxylate cycle 5.28
 7 Glucose oxygen and reactive oxygen species metabolism 5.04
 8 Uracil fumarate transport* 4.32
 9 Phosphate vacuole fusion, non-autophagic 4.20
10 Leucine fermentation* 4.15
11 Phosphate regulation of cell redox homeostasis* 4.03
12 Leucine fumarate transport* 3.72
13 Leucine glyoxylate cycle 3.65
14 Sulfate protein ubiquitination 3.4
15 Sulfate fumarate transport* 3.27
16 Uracil pyridoxine metabolism 3.11
17 Uracil asparagine catabolism* 3.06
18 Sulfate sulfur amino acid metabolism* 2.69

Exercise 12

There’s a slight problem with the examples above. We’re getting the average expression of all the biological processes separately by each nutrient. But some of these biological processes only have a single gene in them! If we tried to do the same thing to get the correlation between rate and expression, the calculation would work, but we’d get a warning about a standard deviation being zero. The correlation coefficient value that results is NA, i.e., missing. While we’re summarizing the correlation between rate and expression, let’s also show the number of distinct genes within each grouping.

ydat |>
 group_by(nutrient, bp) |>
 summarize(r=cor(rate, expression), ngenes=n_distinct(symbol))

Warning: There was 1 warning in `summarize()`.
ℹ In argument: `r = cor(rate, expression)`.
ℹ In group 110: `nutrient = "Ammonia"` and `bp = "allantoate transport"`.
Caused by warning in `cor()`:
! the standard deviation is zero

A tibble: 5,286 × 4
Groups: nutrient [6]
 nutrient bp r ngenes
 <chr> <chr> <dbl> <int>
 1 Ammonia 'de novo' IMP biosynthesis* 0.312 8
 2 Ammonia 'de novo' pyrimidine base biosynthesis -0.0482 3
 3 Ammonia 'de novo' pyrimidine base biosynthesis* 0.167 4
 4 Ammonia 35S primary transcript processing 0.508 13
 5 Ammonia 35S primary transcript processing* 0.424 30
 6 Ammonia AMP biosynthesis* 0.464 1
 7 Ammonia ATP synthesis coupled proton transport 0.112 15
 8 Ammonia ATP synthesis coupled proton transport* -0.541 2
 9 Ammonia C-terminal protein amino acid methylation 0.813 1
10 Ammonia D-ribose metabolism -0.837 1
ℹ 5,276 more rows

Take the above code and continue to process the result to show only results where the process has at least 5 genes. Add a column corresponding to the absolute value of the correlation coefficient, and show for each nutrient the singular process with the highest correlation between rate and expression, regardless of direction. Hint: 4 more pipes: filter, mutate, arrange, and filter again with row_number()==1. Ignore the warning.

A tibble: 6 × 5
Groups: nutrient [6]
 nutrient bp r ngenes absr
 <chr> <chr> <dbl> <int> <dbl>
1 Glucose telomerase-independent telomere maintenance -0.95 7 0.95
2 Ammonia telomerase-independent telomere maintenance -0.91 7 0.91
3 Leucine telomerase-independent telomere maintenance -0.9 7 0.9
4 Phosphate telomerase-independent telomere maintenance -0.9 7 0.9
5 Uracil telomerase-independent telomere maintenance -0.81 7 0.81
6 Sulfate translational elongation* 0.79 5 0.79

4 Tidy Data and Advanced Data Manipulation

Recommended reading prior to class: Sections 1-3 of Wickham, H. “Tidy Data.” Journal of Statistical Software 59:10 (2014).

Data needed:

	Heart rate data: heartrate2dose.csv

	Tidy yeast data: brauer2007_tidy.csv

	Original (untidy) yeast data: brauer2007_messy.csv

	Yeast systematic names to GO terms: brauer2007_sysname2go.csv

4.1 Tidy data

So far we’ve dealt exclusively with tidy data – data that’s easy to work with, manipulate, and visualize. That’s because our dataset has two key properties:

	Each column is a variable.

	Each row is an observation.

You can read a lot more about tidy data in this paper. Let’s load some untidy data and see if we can see the difference. This is some made-up data for five different patients (Jon, Ann, Bill, Kate, and Joe) given three different drugs (A, B, and C), at two doses (10 and 20), and measuring their heart rate. Download the heartrate2dose.csv file. Load readr and dplyr, and import and display the data.

library(readr)
library(dplyr)
hr <- read_csv("data/heartrate2dose.csv")
hr

A tibble: 5 × 7
 name a_10 a_20 b_10 b_20 c_10 c_20
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 jon 60 55 65 60 70 70
2 ann 65 60 70 65 75 75
3 bill 70 65 75 70 80 80
4 kate 75 70 80 75 85 85
5 joe 80 75 85 80 90 90

Notice how with the yeast data each variable (symbol, nutrient, rate, expression, etc.) were each in their own column. In this heart rate data, we have four variables: name, drug, dose, and heart rate. Name is in a column, but drug is in the header row. Furthermore the drug and dose are tied together in the same column, and the heart rate is scattered around the entire table. If we wanted to do things like filter the dataset where drug=="a" or dose==20 or heartrate>=80 we couldn’t do it because these variables aren’t in columns.

4.2 The tidyr package

The tidyr package helps with this. There are several functions in the tidyr package but the ones we’re going to use are separate() and gather(). The gather() function takes multiple columns, and gathers them into key-value pairs: it makes “wide” data longer. The separate() function separates one column into multiple columns. So, what we need to do is gather all the drug/dose data into a column with their corresponding heart rate, and then separate that column into two separate columns for the drug and dose.

Before we get started, load the tidyr package, and look at the help pages for ?gather and ?separate. Notice how each of these functions takes a data frame as input and returns a data frame as output. Thus, we can pipe from one function to the next.

library(tidyr)

4.2.1 gather()

The help for ?gather tells us that we first pass in a data frame (or omit the first argument, and pipe in the data with |>). The next two arguments are the names of the key and value columns to create, and all the relevant arguments that come after that are the columns we want to gather together. Here’s one way to do it.

hr |> gather(key=drugdose, value=hr, a_10, a_20, b_10, b_20, c_10, c_20)

A tibble: 30 × 3
 name drugdose hr
 <chr> <chr> <dbl>
 1 jon a_10 60
 2 ann a_10 65
 3 bill a_10 70
 4 kate a_10 75
 5 joe a_10 80
 6 jon a_20 55
 7 ann a_20 60
 8 bill a_20 65
 9 kate a_20 70
10 joe a_20 75
ℹ 20 more rows

But that gets cumbersome to type all those names. What if we had 100 drugs and 3 doses of each? There are two other ways of specifying which columns to gather. The help for ?gather tells you how to do this:

... Specification of columns to gather. Use bare variable names. Select all variables between x and z with x:z, exclude y with -y. For more options, see the select documentation.

So, we could accomplish the same thing by doing this:

hr |> gather(key=drugdose, value=hr, a_10:c_20)

A tibble: 30 × 3
 name drugdose hr
 <chr> <chr> <dbl>
 1 jon a_10 60
 2 ann a_10 65
 3 bill a_10 70
 4 kate a_10 75
 5 joe a_10 80
 6 jon a_20 55
 7 ann a_20 60
 8 bill a_20 65
 9 kate a_20 70
10 joe a_20 75
ℹ 20 more rows

But what if we didn’t know the drug names or doses, but we did know that the only other column in there that we don’t want to gather is name?

hr |> gather(key=drugdose, value=hr, -name)

A tibble: 30 × 3
 name drugdose hr
 <chr> <chr> <dbl>
 1 jon a_10 60
 2 ann a_10 65
 3 bill a_10 70
 4 kate a_10 75
 5 joe a_10 80
 6 jon a_20 55
 7 ann a_20 60
 8 bill a_20 65
 9 kate a_20 70
10 joe a_20 75
ℹ 20 more rows

4.2.2 separate()

Finally, look at the help for ?separate. We can pipe in data and omit the first argument. The second argument is the column to separate; the into argument is a character vector of the new column names, and the sep argument is a character used to separate columns, or a number indicating the position to split at.

Side note, and 60-second lesson on vectors: We can create arbitrary-length vectors, which are simply variables that contain an arbitrary number of values. To create a numeric vector, try this: c(5, 42, 22908). That creates a three element vector. Try c("cat", "dog").

hr |>
 gather(key=drugdose, value=hr, -name) |>
 separate(drugdose, into=c("drug", "dose"), sep="_")

A tibble: 30 × 4
 name drug dose hr
 <chr> <chr> <chr> <dbl>
 1 jon a 10 60
 2 ann a 10 65
 3 bill a 10 70
 4 kate a 10 75
 5 joe a 10 80
 6 jon a 20 55
 7 ann a 20 60
 8 bill a 20 65
 9 kate a 20 70
10 joe a 20 75
ℹ 20 more rows

4.2.3 |> it all together

Let’s put it all together with gather |> separate |> filter |> group_by |> summarize.

If we create a new data frame that’s a tidy version of hr, we can do those kinds of manipulations we talked about before:

Create a new data.frame
hrtidy <- hr |>
 gather(key=drugdose, value=hr, -name) |>
 separate(drugdose, into=c("drug", "dose"), sep="_")

Optionally, view it
View(hrtidy)

filter
hrtidy |> filter(drug=="a")

A tibble: 10 × 4
 name drug dose hr
 <chr> <chr> <chr> <dbl>
 1 jon a 10 60
 2 ann a 10 65
 3 bill a 10 70
 4 kate a 10 75
 5 joe a 10 80
 6 jon a 20 55
 7 ann a 20 60
 8 bill a 20 65
 9 kate a 20 70
10 joe a 20 75

hrtidy |> filter(dose==20)

A tibble: 15 × 4
 name drug dose hr
 <chr> <chr> <chr> <dbl>
 1 jon a 20 55
 2 ann a 20 60
 3 bill a 20 65
 4 kate a 20 70
 5 joe a 20 75
 6 jon b 20 60
 7 ann b 20 65
 8 bill b 20 70
 9 kate b 20 75
10 joe b 20 80
11 jon c 20 70
12 ann c 20 75
13 bill c 20 80
14 kate c 20 85
15 joe c 20 90

hrtidy |> filter(hr>=80)

A tibble: 10 × 4
 name drug dose hr
 <chr> <chr> <chr> <dbl>
 1 joe a 10 80
 2 kate b 10 80
 3 joe b 10 85
 4 joe b 20 80
 5 bill c 10 80
 6 kate c 10 85
 7 joe c 10 90
 8 bill c 20 80
 9 kate c 20 85
10 joe c 20 90

analyze
hrtidy |>
 filter(name!="joe") |>
 group_by(drug, dose) |>
 summarize(meanhr=mean(hr))

A tibble: 6 × 3
Groups: drug [3]
 drug dose meanhr
 <chr> <chr> <dbl>
1 a 10 67.5
2 a 20 62.5
3 b 10 72.5
4 b 20 67.5
5 c 10 77.5
6 c 20 77.5

4.3 Tidy the yeast data

Now, let’s take a look at the yeast data again. The data we’ve been working with up to this point was already cleaned up to a good degree. All of our variables (symbol, nutrient, rate, expression, GO terms, etc.) were each in their own column. Make sure you have the necessary libraries loaded, and read in the tidy data once more into an object called ydat.

Load libraries
library(readr)
library(dplyr)
library(tidyr)

Import data
ydat <- read_csv("data/brauer2007_tidy.csv")

Optionally, View
View(ydat)

Or just display to the screen
ydat

A tibble: 198,430 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole…
 2 <NA> YNL095C Glucose 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W Glucose 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in … prot…
ℹ 198,420 more rows

But let’s take a look to see what this data originally looked like.

yorig <- read_csv("data/brauer2007_messy.csv")
View(yorig)
yorig

A tibble: 5,536 × 40
 GID YORF NAME GWEIGHT G0.05 G0.1 G0.15 G0.2 G0.25 G0.3 N0.05 N0.1
 <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 GENE1331X A_06… SFB2… 1 -0.24 -0.13 -0.21 -0.15 -0.05 -0.05 0.2 0.24
 2 GENE4924X A_06… NA::… 1 0.28 0.13 -0.4 -0.48 -0.11 0.17 0.31 0
 3 GENE4690X A_06… QRI7… 1 -0.02 -0.27 -0.27 -0.02 0.24 0.25 0.23 0.06
 4 GENE1177X A_06… CFT2… 1 -0.33 -0.41 -0.24 -0.03 -0.03 0 0.2 -0.25
 5 GENE511X A_06… SSO2… 1 0.05 0.02 0.4 0.34 -0.13 -0.14 -0.35 -0.09
 6 GENE2133X A_06… PSP2… 1 -0.69 -0.03 0.23 0.2 0 -0.27 0.17 -0.4
 7 GENE1002X A_06… RIB2… 1 -0.55 -0.3 -0.12 -0.03 -0.16 -0.11 0.04 0
 8 GENE5478X A_06… VMA1… 1 -0.75 -0.12 -0.07 0.02 -0.32 -0.41 0.11 -0.16
 9 GENE2065X A_06… EDC3… 1 -0.24 -0.22 0.14 0.06 0 -0.13 0.3 0.07
10 GENE2440X A_06… VPS5… 1 -0.16 -0.38 0.05 0.14 -0.04 -0.01 0.39 0.2
ℹ 5,526 more rows
ℹ 28 more variables: N0.15 <dbl>, N0.2 <dbl>, N0.25 <dbl>, N0.3 <dbl>,
P0.05 <dbl>, P0.1 <dbl>, P0.15 <dbl>, P0.2 <dbl>, P0.25 <dbl>, P0.3 <dbl>,
S0.05 <dbl>, S0.1 <dbl>, S0.15 <dbl>, S0.2 <dbl>, S0.25 <dbl>, S0.3 <dbl>,
L0.05 <dbl>, L0.1 <dbl>, L0.15 <dbl>, L0.2 <dbl>, L0.25 <dbl>, L0.3 <dbl>,
U0.05 <dbl>, U0.1 <dbl>, U0.15 <dbl>, U0.2 <dbl>, U0.25 <dbl>, U0.3 <dbl>

There are several issues here.

	Multiple variables are stored in one column. The NAME column contains lots of information, split up by ::’s.

	Nutrient and rate variables are stuck in column headers. That is, the column names contain the values of two variables: nutrient (G, N, P, S, L, U) and growth rate (0.05-0.3). Remember, with tidy data, each column is a variable and each row is an observation. Here, we have not one observation per row, but 36 (6 nutrients ×\times 6 rates)! There’s no way we could filter this data by a certain nutrient, or try to calculate statistics between rate and expression.

	Expression values are scattered throughout the table. Related to the problem above, and just like our heart rate example, expression isn’t a single-column variable as in the cleaned tidy data, but it’s scattered around these 36 columns.

	Other important information is in a separate table. We’re missing all the gene ontology information we had in the tidy data (no information about biological process (bp) or molecular function (mf)).

Let’s tackle these issues one at a time, all on a |> pipeline.

4.3.1 separate() the NAME

Let’s separate() the NAME column into multiple different variables. The first row looks like this:

SFB2::YNL049C::1082129

That is, it looks like we’ve got the gene symbol, the systematic name, and some other number (that isn’t discussed in the paper). Let’s separate()!

yorig |>
 separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::")

A tibble: 5,536 × 42
 GID YORF symbol systematic_name somenumber GWEIGHT G0.05 G0.1 G0.15 G0.2
 <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 GENE… A_06… SFB2 YNL049C 1082129 1 -0.24 -0.13 -0.21 -0.15
 2 GENE… A_06… NA YNL095C 1086222 1 0.28 0.13 -0.4 -0.48
 3 GENE… A_06… QRI7 YDL104C 1085955 1 -0.02 -0.27 -0.27 -0.02
 4 GENE… A_06… CFT2 YLR115W 1081958 1 -0.33 -0.41 -0.24 -0.03
 5 GENE… A_06… SSO2 YMR183C 1081214 1 0.05 0.02 0.4 0.34
 6 GENE… A_06… PSP2 YML017W 1083036 1 -0.69 -0.03 0.23 0.2
 7 GENE… A_06… RIB2 YOL066C 1081766 1 -0.55 -0.3 -0.12 -0.03
 8 GENE… A_06… VMA13 YPR036W 1086860 1 -0.75 -0.12 -0.07 0.02
 9 GENE… A_06… EDC3 YEL015W 1082963 1 -0.24 -0.22 0.14 0.06
10 GENE… A_06… VPS5 YOR069W 1083389 1 -0.16 -0.38 0.05 0.14
ℹ 5,526 more rows
ℹ 32 more variables: G0.25 <dbl>, G0.3 <dbl>, N0.05 <dbl>, N0.1 <dbl>,
N0.15 <dbl>, N0.2 <dbl>, N0.25 <dbl>, N0.3 <dbl>, P0.05 <dbl>, P0.1 <dbl>,
P0.15 <dbl>, P0.2 <dbl>, P0.25 <dbl>, P0.3 <dbl>, S0.05 <dbl>, S0.1 <dbl>,
S0.15 <dbl>, S0.2 <dbl>, S0.25 <dbl>, S0.3 <dbl>, L0.05 <dbl>, L0.1 <dbl>,
L0.15 <dbl>, L0.2 <dbl>, L0.25 <dbl>, L0.3 <dbl>, U0.05 <dbl>, U0.1 <dbl>,
U0.15 <dbl>, U0.2 <dbl>, U0.25 <dbl>, U0.3 <dbl>

Now, let’s select() out the stuff we don’t want.

yorig |>
 separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::") |>
 select(-GID, -YORF, -somenumber, -GWEIGHT)

A tibble: 5,536 × 38
 symbol systematic_name G0.05 G0.1 G0.15 G0.2 G0.25 G0.3 N0.05 N0.1 N0.15
 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 SFB2 YNL049C -0.24 -0.13 -0.21 -0.15 -0.05 -0.05 0.2 0.24 -0.2
 2 NA YNL095C 0.28 0.13 -0.4 -0.48 -0.11 0.17 0.31 0 -0.63
 3 QRI7 YDL104C -0.02 -0.27 -0.27 -0.02 0.24 0.25 0.23 0.06 -0.66
 4 CFT2 YLR115W -0.33 -0.41 -0.24 -0.03 -0.03 0 0.2 -0.25 -0.49
 5 SSO2 YMR183C 0.05 0.02 0.4 0.34 -0.13 -0.14 -0.35 -0.09 -0.08
 6 PSP2 YML017W -0.69 -0.03 0.23 0.2 0 -0.27 0.17 -0.4 -0.54
 7 RIB2 YOL066C -0.55 -0.3 -0.12 -0.03 -0.16 -0.11 0.04 0 -0.63
 8 VMA13 YPR036W -0.75 -0.12 -0.07 0.02 -0.32 -0.41 0.11 -0.16 -0.26
 9 EDC3 YEL015W -0.24 -0.22 0.14 0.06 0 -0.13 0.3 0.07 -0.3
10 VPS5 YOR069W -0.16 -0.38 0.05 0.14 -0.04 -0.01 0.39 0.2 0.27
ℹ 5,526 more rows
ℹ 27 more variables: N0.2 <dbl>, N0.25 <dbl>, N0.3 <dbl>, P0.05 <dbl>,
P0.1 <dbl>, P0.15 <dbl>, P0.2 <dbl>, P0.25 <dbl>, P0.3 <dbl>, S0.05 <dbl>,
S0.1 <dbl>, S0.15 <dbl>, S0.2 <dbl>, S0.25 <dbl>, S0.3 <dbl>, L0.05 <dbl>,
L0.1 <dbl>, L0.15 <dbl>, L0.2 <dbl>, L0.25 <dbl>, L0.3 <dbl>, U0.05 <dbl>,
U0.1 <dbl>, U0.15 <dbl>, U0.2 <dbl>, U0.25 <dbl>, U0.3 <dbl>

4.3.2 gather() the data

Let’s gather the data from wide to long format so we get nutrient/rate (key) and expression (value) in their own columns.

yorig |>
 separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::") |>
 select(-GID, -YORF, -somenumber, -GWEIGHT) |>
 gather(key=nutrientrate, value=expression, G0.05:U0.3)

A tibble: 199,296 × 4
 symbol systematic_name nutrientrate expression
 <chr> <chr> <chr> <dbl>
 1 SFB2 YNL049C G0.05 -0.24
 2 NA YNL095C G0.05 0.28
 3 QRI7 YDL104C G0.05 -0.02
 4 CFT2 YLR115W G0.05 -0.33
 5 SSO2 YMR183C G0.05 0.05
 6 PSP2 YML017W G0.05 -0.69
 7 RIB2 YOL066C G0.05 -0.55
 8 VMA13 YPR036W G0.05 -0.75
 9 EDC3 YEL015W G0.05 -0.24
10 VPS5 YOR069W G0.05 -0.16
ℹ 199,286 more rows

And while we’re at it, let’s separate() that newly created key column. Take a look at the help for ?separate again. The sep argument could be a delimiter or a number position to split at. Let’s split after the first character. While we’re at it, let’s hold onto this intermediate data frame before we add gene ontology information. Call it ynogo.

ynogo <- yorig |>
 separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::") |>
 select(-GID, -YORF, -somenumber, -GWEIGHT) |>
 gather(key=nutrientrate, value=expression, G0.05:U0.3) |>
 separate(nutrientrate, into=c("nutrient", "rate"), sep=1)

4.3.3 inner_join() to GO

It’s rare that a data analysis involves only a single table of data. You normally have many tables that contribute to an analysis, and you need flexible tools to combine them. The dplyr package has several tools that let you work with multiple tables at once. Do a Google image search for “SQL Joins”, and look at RStudio’s Data Wrangling Cheat Sheet to learn more.

First, let’s import the dataset that links the systematic name to gene ontology information. It’s the brauer2007_sysname2go.csv file. Let’s call the imported data frame sn2go.

Import the data
sn2go <- read_csv("data/brauer2007_sysname2go.csv")

Take a look
View(sn2go)
head(sn2go)

A tibble: 6 × 3
 systematic_name bp mf
 <chr> <chr> <chr>
1 YNL049C ER to Golgi transport molecular function unknown
2 YNL095C biological process unknown molecular function unknown
3 YDL104C proteolysis and peptidolysis metalloendopeptidase activity
4 YLR115W mRNA polyadenylylation* RNA binding
5 YMR183C vesicle fusion* t-SNARE activity
6 YML017W biological process unknown molecular function unknown

Now, look up some help for ?inner_join. Inner join will return a table with all rows from the first table where there are matching rows in the second table, and returns all columns from both tables. Let’s give this a try.

yjoined <- inner_join(ynogo, sn2go, by="systematic_name")
View(yjoined)
yjoined

A tibble: 199,296 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
 1 SFB2 YNL049C G 0.05 -0.24 ER to Golgi transport mole…
 2 NA YNL095C G 0.05 0.28 biological process un… mole…
 3 QRI7 YDL104C G 0.05 -0.02 proteolysis and pepti… meta…
 4 CFT2 YLR115W G 0.05 -0.33 mRNA polyadenylylatio… RNA …
 5 SSO2 YMR183C G 0.05 0.05 vesicle fusion* t-SN…
 6 PSP2 YML017W G 0.05 -0.69 biological process un… mole…
 7 RIB2 YOL066C G 0.05 -0.55 riboflavin biosynthes… pseu…
 8 VMA13 YPR036W G 0.05 -0.75 vacuolar acidification hydr…
 9 EDC3 YEL015W G 0.05 -0.24 deadenylylation-indep… mole…
10 VPS5 YOR069W G 0.05 -0.16 protein retention in … prot…
ℹ 199,286 more rows

The glimpse function makes it possible to see a little bit of everything in your data.
glimpse(yjoined)

Rows: 199,296
Columns: 7
$ symbol <chr> "SFB2", "NA", "QRI7", "CFT2", "SSO2", "PSP2", "RIB2", …
$ systematic_name <chr> "YNL049C", "YNL095C", "YDL104C", "YLR115W", "YMR183C",…
$ nutrient <chr> "G", "G", "G", "G", "G", "G", "G", "G", "G", "G", "G",…
$ rate <chr> "0.05", "0.05", "0.05", "0.05", "0.05", "0.05", "0.05"…
$ expression <dbl> -0.24, 0.28, -0.02, -0.33, 0.05, -0.69, -0.55, -0.75, …
$ bp <chr> "ER to Golgi transport", "biological process unknown",…
$ mf <chr> "molecular function unknown", "molecular function unkn…

There are many different kinds of two-table verbs/joins in dplyr. In this example, every systematic name in ynogo had a corresponding entry in sn2go, but if this weren’t the case, those un-annotated genes would have been removed entirely by the inner_join. A left_join would have returned all the rows in ynogo, but would have filled in bp and mf with missing values (NA) when there was no corresponding entry. See also: right_join, semi_join, and anti_join.

4.3.4 Finishing touches

We’re almost there but we have an obvious discrepancy in the number of rows between yjoined and ydat.

nrow(yjoined)

[1] 199296

nrow(ydat)

[1] 198430

Before we can figure out what rows are different, we need to make sure all of the columns are the same class and do something more miscellaneous cleanup.

In particular:

	Convert rate to a numeric column

	Make sure NA values are coded properly

	Create (and merge) values to convert “G” to “Glucose”, “L” to “Leucine”, etc.

	Rename and reorder columns

The code below implements those operations on yjoined.

nutrientlookup <-
 tibble(nutrient = c("G", "L", "N", "P", "S", "U"), nutrientname = c("Glucose", "Leucine", "Ammonia","Phosphate", "Sulfate","Uracil"))

yjoined <-
 yjoined |>
 mutate(rate = as.numeric(rate)) |>
 mutate(symbol = ifelse(symbol == "NA", NA, symbol)) |>
 left_join(nutrientlookup) |>
 select(-nutrient) |>
 select(symbol:systematic_name, nutrient = nutrientname, rate:mf)

Now we can determine what rows are different between yjoined and ydat using anti_join, which will return all of the rows that do not match.

anti_join(yjoined, ydat)

A tibble: 866 × 7
 symbol systematic_name nutrient rate expression bp mf
 <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>
 1 <NA> YLL030C Glucose 0.05 NA <NA> <NA>
 2 <NA> YOR050C Glucose 0.05 NA <NA> <NA>
 3 <NA> YPR039W Glucose 0.05 NA <NA> <NA>
 4 <NA> YOL013W-B Glucose 0.05 NA <NA> <NA>
 5 HXT12 YIL170W Glucose 0.05 NA biological process un… mole…
 6 <NA> YPR013C Glucose 0.05 NA biological process un… mole…
 7 <NA> YOR314W Glucose 0.05 NA <NA> <NA>
 8 <NA> YJL064W Glucose 0.05 NA <NA> <NA>
 9 <NA> YPR136C Glucose 0.05 NA <NA> <NA>
10 <NA> YDR015C Glucose 0.05 NA <NA> <NA>
ℹ 856 more rows

Hmmmm … so yjoined has some rows that have missing (NA) expression values. Let’s try removing those and then comparing the data frame contents one more time.

yjoined <-
 yjoined |>
 filter(!is.na(expression))

nrow(yjoined)

[1] 198430

nrow(ydat)

[1] 198430

all.equal(ydat, yjoined)

[1] "Attributes: < Names: 1 string mismatch >"
[2] "Attributes: < Length mismatch: comparison on first 2 components >"
[3] "Attributes: < Component \"class\": Lengths (4, 3) differ (string compare on first 3) >"
[4] "Attributes: < Component \"class\": 3 string mismatches >"
[5] "Attributes: < Component 2: target is externalptr, current is numeric >"

Looks like that did it!

5 Data Visualization with ggplot2

This section will cover fundamental concepts for creating effective data visualization and will introduce tools and techniques for visualizing large, high-dimensional data using R. We will review fundamental concepts for visually displaying quantitative information, such as using series of small multiples, avoiding “chart-junk,” and maximizing the data-ink ratio. We will cover the grammar of graphics (geoms, aesthetics, stats, and faceting), and using the ggplot2 package to create plots layer-by-layer.

This chapter assumes a basic familiarity with R (Chapter 1), data frames (Chapter 2), and manipulating data with dplyr and |> (Chapter 3).

5.1 Review

5.1.1 Gapminder data

We’re going to work with a different dataset for this section. It’s a cleaned-up excerpt from the Gapminder data. Download the gapminder.csv data by clicking here or using the link above.

Let’s read in the data to an object called gm and take a look with View. Remember, we need to load both the dplyr and readr packages for efficiently reading in and displaying this data.

Load packages
library(readr)
library(dplyr)

Download the data locally and read the file
gm <- read_csv(file="data/gapminder.csv")

Show the first few lines of the data
gm

A tibble: 1,704 × 6
 country continent year lifeExp pop gdpPercap
 <chr> <chr> <dbl> <dbl> <dbl> <dbl>
 1 Afghanistan Asia 1952 28.8 8425333 779.
 2 Afghanistan Asia 1957 30.3 9240934 821.
 3 Afghanistan Asia 1962 32.0 10267083 853.
 4 Afghanistan Asia 1967 34.0 11537966 836.
 5 Afghanistan Asia 1972 36.1 13079460 740.
 6 Afghanistan Asia 1977 38.4 14880372 786.
 7 Afghanistan Asia 1982 39.9 12881816 978.
 8 Afghanistan Asia 1987 40.8 13867957 852.
 9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
ℹ 1,694 more rows

Optionally bring up data in a viewer window.
View(gm)

This particular excerpt has 1704 observations on six variables:

	country a categorical variable 142 levels

	continent, a categorical variable with 5 levels

	year: going from 1952 to 2007 in increments of 5 years

	pop: population

	gdpPercap: GDP per capita

	lifeExp: life expectancy

5.1.2 dplyr review

The dplyr package gives you a handful of useful verbs for managing data. On their own they don’t do anything that base R can’t do. Here are some of the single-table verbs we’ll be working with in this chapter (single-table meaning that they only work on a single table – contrast that to two-table verbs used for joining data together). They all take a data.frame or tbl as their input for the first argument, and they all return a data.frame or tbl as output.

	filter(): filters rows of the data where some condition is true

	select(): selects out particular columns of interest

	mutate(): adds new columns or changes values of existing columns

	arrange(): arranges a data frame by the value of a column

	summarize(): summarizes multiple values to a single value, most useful when combined with…

	group_by(): groups a data frame by one or more variable. Most data operations are useful done on groups defined by variables in the the dataset. The group_by function takes an existing data frame and converts it into a grouped data frame where summarize() operations are performed by group.

Additionally, the |> operator allows you to “chain” operations together. Rather than nesting functions inside out, the |> operator allows you to write operations left-to-right, top-to-bottom. Let’s say we wanted to get the average life expectancy and GDP (not GDP per capita) for Asian countries for each year.

The |> would allow us to do this:

gm |>
 mutate(gdp=gdpPercap*pop) |>
 filter(continent=="Asia") |>
 group_by(year) |>
 summarize(mean(lifeExp), mean(gdp))

A tibble: 12 × 3
 year `mean(lifeExp)` `mean(gdp)`
 <dbl> <dbl> <dbl>
 1 1952 46.3 34095762661.
 2 1957 49.3 47267432088.
 3 1962 51.6 60136869012.
 4 1967 54.7 84648519224.
 5 1972 57.3 124385747313.
 6 1977 59.6 159802590186.
 7 1982 62.6 194429049919.
 8 1987 64.9 241784763369.
 9 1992 66.5 307100497486.
10 1997 68.0 387597655323.
11 2002 69.2 458042336179.
12 2007 70.7 627513635079.

Instead of this:

summarize(
 group_by(
 filter(
 mutate(gm, gdp=gdpPercap*pop),
 continent=="Asia"),
 year),
mean(lifeExp), mean(gdp))

5.2 About ggplot2

ggplot2 is a widely used R package that extends R’s visualization capabilities. It takes the hassle out of things like creating legends, mapping other variables to scales like color, or faceting plots into small multiples. We’ll learn about what all these things mean shortly.

Where does the “gg” in ggplot2 come from? The ggplot2 package provides an R implementation of Leland Wilkinson’s Grammar of Graphics (1999). The Grammar of Graphics allows you to think beyond the garden variety plot types (e.g. scatterplot, barplot) and the consider the components that make up a plot or graphic, such as how data are represented on the plot (as lines, points, etc.), how variables are mapped to coordinates or plotting shape or color, what transformation or statistical summary is required, and so on.

Specifically, ggplot2 allows you to build a plot layer-by-layer by specifying:

	a geom, which specifies how the data are represented on the plot (points, lines, bars, etc.),

	aesthetics that map variables in the data to axes on the plot or to plotting size, shape, color, etc.,

	a stat, a statistical transformation or summary of the data applied prior to plotting,

	facets, which we’ve already seen above, that allow the data to be divided into chunks on the basis of other categorical or continuous variables and the same plot drawn for each chunk.

First, a note about qplot(). The qplot() function is a quick and dirty way of making ggplot2 plots. You might see it if you look for help with ggplot2, and it’s even covered extensively in the ggplot2 book. And if you’re used to making plots with built-in base graphics, the qplot() function will probably feel more familiar. But the sooner you abandon the qplot() syntax the sooner you’ll start to really understand ggplot2’s approach to building up plots layer by layer. So we’re not going to use it at all in this class.

5.3 Plotting bivariate data: continuous Y by continuous X

The ggplot function has two required arguments: the data used for creating the plot, and an aesthetic mapping to describe how variables in said data are mapped to things we can see on the plot.

First let’s load the package:

library(ggplot2)

Now, let’s lay out the plot. If we want to plot a continuous Y variable by a continuous X variable we’re probably most interested in a scatter plot. Here, we’re telling ggplot that we want to use the gm dataset, and the aesthetic mapping will map gdpPercap onto the x-axis and lifeExp onto the y-axis. Remember that the variable names are case sensitive!

ggplot(gm, aes(x = gdpPercap, y = lifeExp))

When we do that we get a blank canvas with no data showing (you might get an error if you’re using an old version of ggplot2). That’s because all we’ve done is laid out a two-dimensional plot specifying what goes on the x and y axes, but we haven’t told it what kind of geometric object to plot. The obvious choice here is a point. Check out docs.ggplot2.org to see what kind of geoms are available.

ggplot(gm, aes(x = gdpPercap, y = lifeExp)) + geom_point()

Here, we’ve built our plot in layers. First, we create a canvas for plotting layers to come using the ggplot function, specifying which data to use (here, the gm data frame), and an aesthetic mapping of gdpPercap to the x-axis and lifeExp to the y-axis. We next add a layer to the plot, specifying a geom, or a way of visually representing the aesthetic mapping.

Now, the typical workflow for building up a ggplot2 plot is to first construct the figure and save that to a variable (for example, p), and as you’re experimenting, you can continue to re-define the p object as you develop “keeper commands”.

First, let’s construct the graphic. Notice that we don’t have to specify x= and y= if we specify the arguments in the correct order (x is first, y is second).

p <- ggplot(gm, aes(gdpPercap, lifeExp))

The p object now contains the canvas, but nothing else. Try displaying it by just running p. Let’s experiment with adding points and a different scale to the x-axis.

Experiment with adding poings
p + geom_point()

Experiment with a different scale
p + geom_point() + scale_x_log10()

I like the look of using a log scale for the x-axis. Let’s make that stick.

p <- p + scale_x_log10()

Now, if we re-ran p still nothing would show up because the p object just contains a blank canvas. Now, re-plot again with a layer of points:

p + geom_point()

Now notice what I’ve saved to p at this point: only the basic plot layout and the log10 mapping on the x-axis. I didn’t save any layers yet because I want to fiddle around with the points for a bit first.

Above we implied the aesthetic mappings for the x- and y- axis should be gdpPercap and lifeExp, but we can also add aesthetic mappings to the geoms themselves. For instance, what if we wanted to color the points by the value of another variable in the dataset, say, continent?

p + geom_point(aes(color=continent))

Notice the difference here. If I wanted the colors to be some static value, I wouldn’t wrap that in a call to aes(). I would just specify it outright. Same thing with other features of the points. For example, lets make all the points huge (size=8) blue (color="blue") semitransparent (alpha=(1/4)) triangles (pch=17):

p + geom_point(color="blue", pch=17, size=8, alpha=1/4)

Now, this time, let’s map the aesthetics of the point character to certain features of the data. For instance, let’s give the points different colors and character shapes according to the continent, and map the size of the point onto the life Expectancy:

p + geom_point(aes(col=continent, shape=continent, size=lifeExp))

Now, this isn’t a great plot because there are several aesthetic mappings that are redundant. Life expectancy is mapped to both the y-axis and the size of the points – the size mapping is superfluous. Similarly, continent is mapped to both the color and the point character (the shape is superfluous). Let’s get rid of that, but let’s make the points a little bigger outsize of an aesthetic mapping.

p + geom_point(aes(col=continent), size=3)

Exercise 1

Re-create this same plot from scratch without saving anything to a variable. That is, start from the ggplot call.

	Start with the ggplot() function.

	Use the gm data.

	Map gdpPercap to the x-axis and lifeExp to the y-axis.

	Add points to the plot

	Make the points size 3

	Map continent onto the aesthetics of the point

	Use a log10 scale for the x-axis.

5.3.1 Adding layers

Let’s add a fitted curve to the points. Recreate the plot in the p object if you need to.

p <- ggplot(gm, aes(gdpPercap, lifeExp)) + scale_x_log10()
p + geom_point() + geom_smooth()

By default geom_smooth() will try to lowess for data with n<1000 or generalized additive models for data with n>1000. We can change that behavior by tweaking the parameters to use a thick red line, use a linear model instead of a GAM, and to turn off the standard error stripes.

p + geom_point() + geom_smooth(lwd=2, se=FALSE, method="lm", col="red")

But let’s add back in our aesthetic mapping to the continents. Notice what happens here. We’re mapping continent as an aesthetic mapping to the color of the points only – so geom_smooth() still works only on the entire data.

p + geom_point(aes(color = continent)) + geom_smooth()

But notice what happens here: we make the call to aes() outside of the geom_point() call, and the continent variable gets mapped as an aesthetic to any further geoms. So here, we get separate smoothing lines for each continent. Let’s do it again but remove the standard error stripes and make the lines a bit thicker.

p + aes(color = continent) + geom_point() + geom_smooth()
p + aes(color = continent) + geom_point() + geom_smooth(se=F, lwd=2)

5.3.2 Faceting

Facets display subsets of the data in different panels. There are a couple ways to do this, but facet_wrap() tries to sensibly wrap a series of facets into a 2-dimensional grid of small multiples. Just give it a formula specifying which variables to facet by. We can continue adding more layers, such as smoothing. If you have a look at the help for ?facet_wrap() you’ll see that we can control how the wrapping is laid out.

p + geom_point() + facet_wrap(~continent)
p + geom_point() + geom_smooth() + facet_wrap(~continent, ncol=1)

5.3.3 Saving plots

There are a few ways to save ggplots. The quickest way, that works in an interactive session, is to use the ggsave() function. You give it a file name and by default it saves the last plot that was printed to the screen.

p + geom_point()
ggsave(file="myplot.png")

But if you’re running this through a script, the best way to do it is to pass ggsave() the object containing the plot that is meant to be saved. We can also adjust things like the width, height, and resolution. ggsave() also recognizes the name of the file extension and saves the appropriate kind of file. Let’s save a PDF.

pfinal <- p + geom_point() + geom_smooth() + facet_wrap(~continent, ncol=1)
ggsave(pfinal, file="myplot.pdf", width=5, height=15)

Exercise 2

	Make a scatter plot of lifeExp on the y-axis against year on the x.

	Make a series of small multiples faceting on continent.

	Add a fitted curve, smooth or lm, with and without facets.

	Bonus: using geom_line() and and aesthetic mapping country to group=, make a “spaghetti plot”, showing semitransparent lines connected for each country, faceted by continent. Add a smoothed loess curve with a thick (lwd=3) line with no standard error stripe. Reduce the opacity (alpha=) of the individual black lines. Don’t show Oceania countries (that is, filter() the data where continent!="Oceania" before you plot it).

5.4 Plotting bivariate data: continuous Y by categorical X

With the last example we examined the relationship between a continuous Y variable against a continuous X variable. A scatter plot was the obvious kind of data visualization. But what if we wanted to visualize a continuous Y variable against a categorical X variable? We sort of saw what that looked like in the last exercise. year is a continuous variable, but in this dataset, it’s broken up into 5-year segments, so you could almost think of each year as a categorical variable. But a better example would be life expectancy against continent or country.

First, let’s set up the basic plot:

p <- ggplot(gm, aes(continent, lifeExp))

Then add points:

p + geom_point()

That’s not terribly useful. There’s a big overplotting problem. We can try to solve with transparency:

p + geom_point(alpha=1/4)

But that really only gets us so far. What if we spread things out by adding a little bit of horizontal noise (aka “jitter”) to the data.

p + geom_jitter()

Note that the little bit of horizontal noise that’s added to the jitter is random. If you run that command over and over again, each time it will look slightly different. The idea is to visualize the density at each vertical position, and spreading out the points horizontally allows you to do that. If there were still lots of over-plotting you might think about adding some transparency by setting the alpha= value for the jitter.

p + geom_jitter(alpha=1/2)

Probably a more common visualization is to show a box plot:

p + geom_boxplot()

But why not show the summary and the raw data?

p + geom_jitter() + geom_boxplot()

Notice how in that example we first added the jitter layer then added the boxplot layer. But the boxplot is now superimposed over the jitter layer. Let’s make the jitter layer go on top. Also, go back to just the boxplots. Notice that the outliers are represented as points. But there’s no distinction between the outlier point from the boxplot geom and all the other points from the jitter geom. Let’s change that. Notice the British spelling.

p + geom_boxplot(outlier.colour = "red") + geom_jitter(alpha=1/2)

There’s another geom that’s useful here, called a voilin plot.

p + geom_violin()

p + geom_violin() + geom_jitter(alpha=1/2)

Let’s go back to our boxplot for a moment.

p + geom_boxplot()

This plot would be a lot more effective if the continents were shown in some sort of order other than alphabetical. To do that, we’ll have to go back to our basic build of the plot again and use the reorder function in our original aesthetic mapping. Here, reorder is taking the first variable, which is some categorical variable, and ordering it by the level of the mean of the second variable, which is a continuous variable. It looks like this

p <- ggplot(gm, aes(x=reorder(continent, lifeExp), y=lifeExp))

p + geom_boxplot()

Exercise 3

	Make a jittered strip plot of GDP per capita against continent.

	Make a box plot of GDP per capita against continent.

	Using a log10 y-axis scale, overlay semitransparent jittered points on top of box plots, where outlying points are colored.

	BONUS: Try to reorder the continents on the x-axis by GDP per capita. Why isn’t this working as expected? See ?reorder for clues.

A tibble: 5 × 2
 continent `mean(gdpPercap)`
 <chr> <dbl>
1 Africa 2194.
2 Americas 7136.
3 Asia 7902.
4 Europe 14469.
5 Oceania 18622.

A tibble: 5 × 2
 continent `mean(log10(gdpPercap))`
 <chr> <dbl>
1 Africa 3.15
2 Americas 3.74
3 Asia 3.51
4 Europe 4.06
5 Oceania 4.25

5.5 Plotting univariate continuous data

What if we just wanted to visualize distribution of a single continuous variable? A histogram is the usual go-to visualization. Here we only have one aesthetic mapping instead of two.

p <- ggplot(gm, aes(lifeExp))

p + geom_histogram()

When we do this ggplot lets us know that we’re automatically selecting the width of the bins, and we might want to think about this a little further.

p + geom_histogram(bins=30)

p + geom_histogram(bins=10)

p + geom_histogram(bins=200)

p + geom_histogram(bins=60)

Alternative we could plot a smoothed density curve instead of a histogram:

p + geom_density()

Back to histograms. What if we wanted to color this by continent?

p + geom_histogram(aes(color=continent))

That’s not what we had in mind. That’s just the outline of the bars. We want to change the fill color of the bars.

p + geom_histogram(aes(fill=continent))

Well, that’s not exactly what we want either. If you look at the help for ?geom_histogram you’ll see that by default it stacks overlapping points. This isn’t really an effective visualization. Let’s change the position argument.

p + geom_histogram(aes(fill=continent), position="identity")

But the problem there is that the histograms are blocking each other. What if we tried transparency?

p + geom_histogram(aes(fill=continent), position="identity", alpha=1/3)

That’s somewhat helpful, and might work for two distributions, but it gets cumbersome with 5. Let’s go back and try this with density plots, first changing the color of the line:

p + geom_density(aes(color=continent))

Then by changing the color of the fill and setting the transparency to 25%:

p + geom_density(aes(fill=continent), alpha=1/4)

Exercise 4

	Plot a histogram of GDP Per Capita.

	Do the same but use a log10 x-axis.

	Still on the log10 x-axis scale, try a density plot mapping continent to the fill of each density distribution, and reduce the opacity.

	Still on the log10 x-axis scale, make a histogram faceted by continent and filled by continent. Facet with a single column (see ?facet_wrap for help).

	Save this figure to a 6x10 PDF file.

5.6 Publication-ready plots & themes

Let’s make a plot we made earlier (life expectancy versus the log of GDP per capita with points colored by continent with lowess smooth curves overlaid without the standard error ribbon):

p <- ggplot(gm, aes(gdpPercap, lifeExp))
p <- p + scale_x_log10()
p <- p + aes(col=continent) + geom_point() + geom_smooth(lwd=2, se=FALSE)

Give the plot a title and axis labels:

p <- p + ggtitle("Life expectancy vs GDP by Continent")
p <- p + xlab("GDP Per Capita (USD)") + ylab("Life Expectancy (years)")

By default, the “gray” theme is the usual background (I’ve changed this course website to use the black and white background for all images).

p + theme_gray()

We could also get a black and white background:

p + theme_bw()

Or go a step further and remove the gridlines:

p + theme_classic()

Finally, there’s another package that gives us lots of different themes. Install it if you don’t have it already. Install all its dependencies along with it.

install.packages("ggthemes", dependencies = TRUE)

library(ggthemes)
p <- ggplot(gm, aes(gdpPercap, lifeExp))
p <- p + scale_x_log10()
p <- p + aes(col=continent) + geom_point() + geom_smooth(lwd=2, se=FALSE)
p + theme_excel()
p + theme_excel() + scale_colour_excel()
p + theme_gdocs() + scale_colour_gdocs()
p + theme_stata() + scale_colour_stata()
p + theme_wsj() + scale_colour_wsj()
p + theme_economist()
p + theme_fivethirtyeight()
p + theme_tufte()

6 Refresher: Tidy Exploratory Data Analysis

6.1 Chapter overview

This is a refresher chapter designed to be read after completing all the chapters that came before it.

The data and analyses here were inspired by the Tidy Tuesday project – a weekly social data project in R from the R for Data Science online learning community @R4DScommunity.

We’re going to use two different data sets. One containing data on movie budgets and profits that was featured in a FiveThirtyEight article on horror movies and profits, and another with data on college majors and income from the American Community Survey.

Packages needed for this analysis are loaded below. If you don’t have one of these packages installed, simply install it once using install.packages("PackageName"). A quick note on the tidyverse package (https://www.tidyverse.org/): the tidyverse is a collection of other packages that are often used together. When you install or load tidyverse, you also install and load all the packages that we’ve used previously: dplyr, tidyr, ggplot2, as well as several others. Because we’ll be using so many different packages from the tidyverse collection, it’s more efficient load this “meta-package” rather than loading each individual package separately.

library(tidyverse)
library(ggrepel)
library(scales)
library(lubridate)

I’ll demonstrate some functionality from these other packages. They’re handy to have installed, but are not strictly required.

library(plotly)
library(DT)

6.2 Horror Movies & Profit

6.2.1 About the data

The raw data can be downloaded here: movies.csv.

This data was featured in the FiveThirtyEight article, “Scary Movies Are The Best Investment In Hollywood”.

“Horror movies get nowhere near as much draw at the box office as the big-time summer blockbusters or action/adventure movies – the horror genre accounts for only 3.7 percent of the total box-office haul this year – but there’s a huge incentive for studios to continue pushing them out.

The return-on-investment potential for horror movies is absurd. For example, “Paranormal Activity” was made for $450,000 and pulled in $194 million – 431 times the original budget. That’s an extreme, I-invested-in-Microsoft-when-Bill-Gates-was-working-in-a-garage case, but it’s not rare. And that’s what makes horror such a compelling genre to produce.”

– Quote from Walt Hickey for fivethirtyeight article.

Data dictionary (data from the-numbers.com):

	Header
	Description

	release_date
	month-day-year

	movie
	Movie title

	production_budget
	Money spent to create the film

	domestic_gross
	Gross revenue from USA

	worldwide_gross
	Gross worldwide revenue

	distributor
	The distribution company

	mpaa_rating
	Appropriate age rating by the US-based rating agency

	genre
	Film category

6.2.2 Import and clean

If you haven’t already loaded the packages we need, go ahead and do that now.

library(tidyverse)
library(ggrepel)
library(scales)
library(lubridate)

Now, use the read_csv() function from readr (loaded when you load tidyverse), to read in the movies.csv dataset into a new object called mov_raw.

mov_raw <- read_csv("data/movies.csv")
mov_raw

Let’s clean up the data a bit. Remember, construct your pipeline one step at a time first. Once you’re happy with the result, assign the results to a new object, mov.

	Get rid of the blank X1 Variable.

	Change release date into an actual date.

	Calculate the return on investment as the worldwide_gross/production_budget.

	Calculate the percentage of total gross as domestic revenue.

	Get the year, month, and day out of the release date.

	Remove rows where the revenue is $0 (unreleased movies, or data integrity problems), and remove rows missing information about the distributor. Go ahead and remove any data where the rating is unavailable also.

mov <- mov_raw |>
 select(-...1) |>
 mutate(release_date = mdy(release_date)) |>
 mutate(roi = worldwide_gross / production_budget) |>
 mutate(pct_domestic = domestic_gross / worldwide_gross) |>
 mutate(year = year(release_date)) |>
 mutate(month = month(release_date, label = TRUE)) |>
 mutate(day = wday(release_date, label = TRUE)) |>
 arrange(desc(release_date)) |>
 filter(worldwide_gross > 0) |>
 filter(!is.na(distributor)) |>
 filter(!is.na(mpaa_rating))
mov

Let’s take a look at the distribution of release date.

ggplot(mov, aes(year)) + geom_histogram(bins=40)

There doesn’t appear to be much documented berfore 1975, so let’s restrict (read: filter) the dataset to movies made since 1975. Also, we’re going to be doing some analyses by year, and since the data for 2018 is still incomplete, let’s remove all of 2018. Let’s get anything produced in 1975 and after (>=1975) but before 2018 (<2018). Add the final filter statement to the assignment, and make the plot again.

mov <- mov_raw |>
 select(-...1) |>
 mutate(release_date = mdy(release_date)) |>
 mutate(roi = worldwide_gross / production_budget) |>
 mutate(pct_domestic = domestic_gross / worldwide_gross) |>
 mutate(year = year(release_date)) |>
 mutate(month = month(release_date, label = TRUE)) |>
 mutate(day = wday(release_date, label = TRUE)) |>
 arrange(desc(release_date)) |>
 filter(worldwide_gross > 0) |>
 filter(!is.na(distributor)) |>
 filter(!is.na(mpaa_rating)) |>
 filter(year>=1975 & year <2018)
mov

6.2.3 Exploratory Data Analysis

Which days are movies released on? The dplyr count() function counts the number of occurances of a particular variable. It’s shorthand for a group_by() followed by summarize(n=n()). The geom_col() makes a bar chart where the height of the bar is the count of the number of cases, y, at each x position. Feel free to add labels if you want.

mov |>
 count(day, sort=TRUE) |>
 ggplot(aes(day, n)) +
 geom_col() +
 labs(x="", y="Number of movies released",
 title="Which days are movies released on?",
 caption="Adapted from @jaseziv") +
 theme_classic()

Exercise 1

Does the day a movie is release affect revenue? Make a boxplot showing the worldwide gross revenue for each day.

What about month? Just swap day for month in the code.

mov |>
 ggplot(aes(month, worldwide_gross)) +
 geom_boxplot(col="gray10", fill="gray90") +
 scale_y_log10(labels=dollar_format()) +
 labs(x="Release month",
 y="Worldwide gross revenue",
 title="Does the day a movie is release affect revenue?",
 caption="Adapted from @jaseziv") +
 theme_classic()

We could also get a quantitative look at the average revenue by day using a group-by summarize operation:

mov |>
 group_by(day) |>
 summarize(rev=mean(worldwide_gross))

A tibble: 7 × 2
 day rev
 <ord> <dbl>
1 Sun 70256412.
2 Mon 141521289.
3 Tue 177233110.
4 Wed 130794183.
5 Thu 194466996.
6 Fri 90769834.
7 Sat 89889497.

It looks like summer months and holiday months at the end of the year fare well. Let’s look at a table and run a regression analysis.

mov |>
 group_by(month) |>
 summarize(rev=mean(worldwide_gross))

mov |>
 mutate(month=factor(month, ordered=FALSE)) |>
 lm(worldwide_gross~month, data=_) |>
 summary()

What does the worldwide movie market look like by decade? Let’s first group by year and genre and compute the sum of the worldwide gross revenue. After we do that, let’s plot a barplot showing year on the x-axis and the sum of the revenue on the y-axis, where we’re passing the genre variable to the fill aesthetic of the bar.

mov |>
 group_by(year, genre) |>
 summarize(revenue=sum(worldwide_gross)) |>
 ggplot(aes(year, revenue)) +
 geom_col(aes(fill=genre)) +
 scale_y_continuous(labels=dollar_format()) +
 labs(x="", y="Worldwide revenue", title="Worldwide Film Market by Decade")

Which distributors produce the highest grossing movies by genre? First let’s lump all distributors together into 5 major distributors with the most movies, lumping all others into an “Other” category. The fct_lump function from the forcats package (loaded with tidyverse) will do this for you. Take a look at just that result first. Then let’s plot a geom_col(), which plots the actual value of the thing we put on the y-axis (worldwide gross revenue in this case). Because geom_col() puts all the values on top of one another, the highest value will be the one displayed. Let’s add position="dodge" so they’re beside one another instead of stacked. We can continue to add additional things to make the plot pretty. I like the look of this better when we flip the coordinate system with coord_flip().

mov |>
 mutate(distributor=fct_lump(distributor, 5)) |>
 ggplot(aes(distributor, worldwide_gross)) + geom_col(aes(fill=genre), position="dodge") +
 scale_y_continuous(labels = dollar_format()) +
 labs(x="",
 y="Worldwide revenue",
 title="Which distributors produce the highest grossing movies by genre?",
 caption="Adapted from @JamesCBorders") +
 coord_flip()

It looks like Universal made the highest-grossing action and adventure movies, while Warner Bros made the highest grossing horror movies.

But what about return on investment?

mov |>
 group_by(genre) |>
 summarize(roi=mean(roi))

A tibble: 5 × 2
 genre roi
 <chr> <dbl>
1 Action 2.82
2 Adventure 3.60
3 Comedy 3.48
4 Drama 3.40
5 Horror 11.2

It looks like horror movies have overwhelmingly the highest return on investment. Let’s look at this across the top distributors.

Exercise 2

Modify the code above to look at return on investment instead of worldwide gross revenue.

Let’s make a scatter plot showing the worldwide gross revenue over the production budget. Let’s make the size of the point relative to the ROI. Let’s add a “breakeven” line that has a slope of 1 and a y-intercept of zero. Let’s facet by genre.

mov |>
 ggplot(aes(production_budget, worldwide_gross)) +
 geom_point(aes(size = roi)) +
 geom_abline(slope = 1, intercept = 0, col = "red") +
 facet_wrap(~ genre) +
 scale_x_log10(labels = dollar_format()) +
 scale_y_log10(labels = dollar_format()) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
 labs(x = "Production Budget",
 y = "Worldwide gross revenue",
 size = "Return on Investment")

Generally most of the points lie above the “breakeven” line. This is good – if movies weren’t profitable they wouldn’t keep making them. Proportionally there seem to be many more larger points in the Horror genre, indicative of higher ROI.

Let’s create a faceted grid showing distributor by genre. Paramount and Other distributors have the largest share of low-budget high-revenue horror films.

mov |>
 mutate(distributor = fct_lump(distributor, 5)) |>
 ggplot(aes(production_budget, worldwide_gross)) +
 geom_point(aes(size = roi)) +
 geom_abline(slope = 1, intercept = 0) +
 facet_grid(distributor ~ genre) +
 scale_x_log10(labels = dollar_format()) +
 scale_y_log10(labels = dollar_format()) +
 theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
 labs(x = "Production Budget",
 y = "Worldwide gross revenue",
 size = "Return on Investment")

What were those super profitable movies? Looks like they’re mostly horror movies. One thing that’s helpful to do here is to make movies a factor variable, reordering its levels by the median ROI. Look at the help for ?fct_reorder for this. I also like to coord_flip() this plot.

mov |>
 arrange(desc(roi)) |>
 head(20) |>
 mutate(movie=fct_reorder(movie, roi)) |>
 ggplot(aes(movie, roi)) +
 geom_col(aes(fill=genre)) +
 labs(x="Movie",
 y="Return On Investment",
 title="Top 20 most profitable movies",
 caption="Adapted from @DaveBloom11") +
 coord_flip() +
 geom_text(aes(label=paste0(round(roi), "x "), hjust=1), col="white")

It might be informative to run the same analysis for movies that had either exclusive US distribution, or no US distribution at all. We could simply filter for movies with 100% of the revenue coming from domestic gross revenue US only, or 0% from domestic (no US distribution). Just add a filter statement in the pipeline prior to plotting.

mov |>
 filter(pct_domestic==1) |>
 arrange(desc(roi)) |>
 head(20) |>
 mutate(movie=fct_reorder(movie, roi)) |>
 ggplot(aes(movie, roi)) +
 geom_col(aes(fill=genre)) +
 labs(x="Movie",
 y="Return On Investment",
 title="Top 20 most profitable movies with US-only distribution",
 caption="Adapted from @DaveBloom11") +
 coord_flip() +
 geom_text(aes(label=paste0(round(roi), "x "), hjust=1), col="white")

mov |>
 filter(pct_domestic==0) |>
 arrange(desc(roi)) |>
 head(20) |>
 mutate(movie=fct_reorder(movie, roi)) |>
 ggplot(aes(movie, roi)) +
 geom_col(aes(fill=genre)) +
 labs(x="Movie",
 y="Return On Investment",
 title="Top 20 most profitable movies with no US distribution",
 caption="Adapted from @DaveBloom11") +
 coord_flip()

What about movie ratings? R-rated movies have a lower average revenue but ROI isn’t substantially less. The n() function is a helper function that just returns the number of rows for each group in a grouped data frame. We can see that while G-rated movies have the highest mean revenue, there were relatively few of them produced, and had a lower total revenue. There were more R-rated movies, but PG-13 movies really drove the total revenue worldwide.

mov |>
 group_by(mpaa_rating) |>
 summarize(
 meanrev = mean(worldwide_gross),
 totrev = sum(worldwide_gross),
 roi = mean(roi),
 number = n()
)

A tibble: 4 × 5
 mpaa_rating meanrev totrev roi number
 <chr> <dbl> <dbl> <dbl> <int>
1 G 189913348 13863674404 4.42 73
2 PG 147227422. 78324988428 4.64 532
3 PG-13 113477939. 120173136920 3.06 1059
4 R 63627931. 92451383780 4.42 1453

Are there fewer R-rated movies being produced? Not really. Let’s look at the overall number of movies with any particular rating faceted by genre.

mov |>
 count(mpaa_rating, genre) |>
 ggplot(aes(mpaa_rating, n)) +
 geom_col() +
 facet_wrap(~genre) +
 labs(x="MPAA Rating",
 y="Number of films",
 title="Number of films by rating for each genre")

What about the distributions of ratings?

mov |>
 ggplot(aes(worldwide_gross)) +
 geom_histogram() +
 facet_wrap(~mpaa_rating) +
 scale_x_log10(labels=dollar_format()) +
 labs(x="Worldwide gross revenue",
 y="Count",
 title="Distribution of revenue by genre")

mov |>
 ggplot(aes(mpaa_rating, worldwide_gross)) +
 geom_boxplot(col="gray10", fill="gray90") +
 scale_y_log10(labels=dollar_format()) +
 labs(x="MPAA Rating", y="Worldwide gross revenue", title="Revenue by rating")

But, dont be fooled. Yes, on average G-rated movies look to perform better. But there aren’t that many of them being produced, and they aren’t bringing in the lions share of revenue.

mov |>
 count(mpaa_rating) |>
 ggplot(aes(mpaa_rating, n)) +
 geom_col() +
 labs(x="MPAA Rating",
 y="Count",
 title="Total number of movies produced for each rating")

mov |>
 group_by(mpaa_rating) |>
 summarize(total_revenue=sum(worldwide_gross)) |>
 ggplot(aes(mpaa_rating, total_revenue)) +
 geom_col() +
 scale_y_continuous(label=dollar_format()) +
 labs(x="MPAA Rating",
 y="Total worldwide revenue",
 title="Total worldwide revenue for each rating")

6.2.4 Join to IMDB reviews

Look back at the dplyr reference on joins. An inner join lets you take two tables, match by a common column (or columns), and return rows with an entry in both, returning all columns in each table. I’ve downloaded all the data underlying IMDB (imdb.com/interfaces), and created a reduced dataset having ratings for all the movies in IMDB. Let’s join the movie data we have here with IMDB ratings. Download the data here: movies_imdb.csv. Once you’ve downloaded it, read it in with read_csv():

imdb <- read_csv("data/movies_imdb.csv")
imdb

There are 177,519 movies in this dataset. There are 3,117 movies in the data we’ve already been using. Let’s see how many we have that intersect in both:

movimdb <- inner_join(mov, imdb, by="movie")
movimdb

It turns out there are only 2,591 rows in the joined dataset. That’s because there were some rows in mov that weren’t in imdb, and vice versa. Some of these are truly cases where there isn’t an entry in one. Others are cases where it’s Star Wars Ep. I: The Phantom Menace in one dataset but Star Wars: Episode I - The Phantom Menace in another, or Mr. & Mrs. Smith versus Mr. and Mrs. Smith. Others might be ascii versus unicode text incompatibility, e.g. the hyphen “-” versus the endash, “–”.

Now that you have the datasets joined, try a few more exercises!

Exercise 3

Separately for each MPAA rating, display the mean IMDB rating and mean number of votes cast.

A tibble: 4 × 3
 mpaa_rating meanimdb meanvotes
 <chr> <dbl> <dbl>
1 G 6.54 132015.
2 PG 6.31 81841.
3 PG-13 6.25 102740.
4 R 6.58 107575.

Exercise 4

Do the same but for each movie genre.

A tibble: 5 × 3
 genre meanimdb meanvotes
 <chr> <dbl> <dbl>
1 Action 6.28 154681.
2 Adventure 6.27 130027.
3 Comedy 6.08 71288.
4 Drama 6.88 91101.
5 Horror 5.90 89890.

Exercise 5

Do the same but for each distributor, after lumping distributors in a mutate statement to the top 4 distributors, as we’ve done before.

A tibble: 5 × 3
 distributor meanimdb meanvotes
 <fct> <dbl> <dbl>
1 Paramount Pictures 6.44 130546.
2 Sony Pictures 6.25 111913.
3 Universal 6.44 130028.
4 Warner Bros. 6.37 133997.
5 Other 6.46 86070.

Exercise 6

Create a boxplot visually summarizing what you saw in #1 and #2 above. That is, show the distribution of IMDB ratings for each genre, but map the fill aesthetic for the boxplot onto the MPAA rating. Here we can see that Dramas tend to get a higher IMDB rating overall. Across most categories R rated movies fare better. We also see from this that there are no Action or Horror movies rated G (understandably!). In fact, after this I actually wanted to see what the “Horror” movies were having a PG rating that seemed to do better than PG-13 or R rated Horror movies.

movimdb |>
 filter(mpaa_rating=="PG", genre=="Horror") |>
 select(release_date, movie, worldwide_gross, imdb, votes)

A tibble: 5 × 5
 release_date movie worldwide_gross imdb votes
 <date> <chr> <dbl> <dbl> <dbl>
1 2015-10-16 Goosebumps 158905324 6.3 67744
2 1983-06-24 Twilight Zone: The Movie 29500000 6.5 29313
3 1982-06-04 Poltergeist 121706019 7.4 124178
4 1978-06-16 Jaws 2 208900376 5.7 61131
5 1975-06-20 Jaws 470700000 8 492525

Exercise 7

Create a scatter plot of worldwide gross revenue by IMDB rating, with the gross revenue on a log scale. Color the points by genre. Add a trendline with method="lm".

Exercise 8

Create the same plot, this time putting the number of votes on the x-axis, and make both the x and y-axes log scale.

Exercise 9

Create the above plots, but this time plot the ROI instead of the gross revenue.

Exercise 10

Is there a relationship between the release date and the IMDB ratings or votes cast? Surprisingly, there doesn’t appear to be one.

Exercise 11

Is there a relationship between the IMDB rating and the number of votes cast? It appears so, at least as you get toward the movies with the very largest number of ratings.

Exercise 12

Looking at that above plot, I’m interested in (a) what are those movies with the largest number of votes? and (b) what are those movies with at least 50,000 votes that have the worst scores?

movimdb |>
 arrange(desc(votes)) |>
 head(10) |>
 select(release_date, movie, roi, imdb, votes)

A tibble: 10 × 5
 release_date movie roi imdb votes
 <date> <chr> <dbl> <dbl> <dbl>
 1 1994-09-23 The Shawshank Redemption 1.13 9.3 2009031
 2 1999-10-15 Fight Club 1.55 8.8 1607508
 3 1994-10-14 Pulp Fiction 26.6 8.9 1568242
 4 1994-07-06 Forrest Gump 12.4 8.8 1529711
 5 1999-03-31 The Matrix 7.13 8.7 1441344
 6 2014-11-05 Interstellar 4.05 8.6 1221035
 7 2005-06-15 Batman Begins 2.39 8.3 1149747
 8 2009-08-21 Inglourious Basterds 4.53 8.3 1070753
 9 1998-07-24 Saving Private Ryan 7.46 8.6 1058789
10 1993-12-15 Schindler's List 12.9 8.9 1036894

No surprises there. These are some of the most universally loved films ever made. Interesting that the return on investment varies wildly (1.13x for the highest rated movie of all time, up to 26x for Pulp Fiction, which had to pay for an all-star cast).

movimdb |>
 filter(votes>50000) |>
 arrange(imdb) |>
 head(10) |>
 select(release_date, movie, roi, imdb, votes)

A tibble: 10 × 5
 release_date movie roi imdb votes
 <date> <chr> <dbl> <dbl> <dbl>
 1 2008-08-29 Disaster Movie 1.84 1.9 80918
 2 2007-01-26 Epic Movie 4.34 2.3 96271
 3 2006-02-17 Date Movie 4.26 2.8 53781
 4 2011-11-11 Jack and Jill 1.91 3.3 68909
 5 2004-07-23 Catwoman 0.821 3.3 98513
 6 1997-06-20 Batman & Robin 1.91 3.7 212085
 7 1997-06-13 Speed 2: Cruise Control 1.37 3.8 67296
 8 1994-12-23 Street Fighter 2.84 3.8 58912
 9 2015-02-13 Fifty Shades of Grey 14.3 4.1 269355
10 2010-07-01 The Last Airbender 2.13 4.1 133813

Interesting that several of these having such terrible reviews still have fairly high return on investment (>14x for Fifty Shades of Grey!).

6.3 College Majors & Income

6.3.1 About the data

This is the data behind the FiveThirtyEight article, “The Economic Guide To Picking A College Major”.

	All data is from American Community Survey 2010-2012 Public Use Microdata Series.

	Original data and more: http://www.census.gov/programs-surveys/acs/data/pums.html.

	Documentation: http://www.census.gov/programs-surveys/acs/technical-documentation/pums.html

Data Dictionary:

	Header
	Description

	Rank
	Rank by median earnings

	Major_code
	Major code, FO1DP in ACS PUMS

	Major
	Major description

	Major_category
	Category of major from Carnevale et al

	Total
	Total number of people with major

	Sample_size
	Sample size (unweighted) of full-time, year-round ONLY (used for earnings)

	Men
	Male graduates

	Women
	Female graduates

	ShareWomen
	Women as share of total

	Employed
	Number employed (ESR == 1 or 2)

	Full_time
	Employed 35 hours or more

	Part_time
	Employed less than 35 hours

	Full_time_year_round
	Employed at least 50 weeks (WKW == 1) and at least 35 hours (WKHP >= 35)

	Unemployed
	Number unemployed (ESR == 3)

	Unemployment_rate
	Unemployed / (Unemployed + Employed)

	Median
	Median earnings of full-time, year-round workers

	P25th
	25th percentile of earnigns

	P75th
	75th percentile of earnings

	College_jobs
	Number with job requiring a college degree

	Non_college_jobs
	Number with job not requiring a college degree

	Low_wage_jobs
	Number in low-wage service jobs

6.3.2 Import and clean

If you haven’t already loaded the packages we need, go ahead and do that now.

library(tidyverse)
library(ggrepel)
library(scales)
library(lubridate)

Now, use the read_csv() function from readr (loaded when you load tidyverse), to read in the grads.csv dataset into a new object called grads_raw.

Read in the raw data.

grads_raw <- read_csv("data/grads.csv")
grads_raw

Now clean it up a little bit. Remember, construct your pipeline one step at a time first. Once you’re happy with the result, assign the results to a new object, grads.

	Make sure the data is arranged descending by Median income. It should be already, but don’t make any assumptions.

	Make the Major sentence case so it’s not ALL CAPS. This uses the str_to_title() function from the stringr package, loaded with tidyverse.

	Make it a factor variable with levels ordered according to median income.

	Do the same for Major_category – make it a factor variable with levels ordered according to median income.

	Add a new variable, pct_college, that’s the proportion of graduates employed in a job requiring a college degree. We’ll do some analysis with this later on to look at under-employment.

	There’s one entry (“Military technologies”) that has no data about employment. This new variable is therefore missing. Let’s remove this entry.

	There’s an entry with an unknown number of total majors, men, or women (“Food Science”). Let’s remove it by removing anything with a missing Total number.

grads <- grads_raw |>
 arrange(desc(Median)) |>
 mutate(Major = str_to_title(Major)) |>
 mutate(Major = fct_reorder(Major, Median)) |>
 mutate(Major_category = fct_reorder(Major_category, Median)) |>
 mutate(pct_college=College_jobs/(College_jobs+Non_college_jobs)) |>
 filter(!is.na(pct_college)) |>
 filter(!is.na(Total))
grads

6.3.3 Exploratory Data Analysis

Let’s start with an exercise.

Exercise 13

Remake table 1 from the FiveThirtyEight article.

	Use the select() function to get only the columns you care about.

	Use head(10) or tail(10) to show the first or last few rows.

 Major Major_category Total Median
1 Petroleum Engineering Engineering 2339 110000
2 Mining And Mineral Engineering Engineering 756 75000
3 Metallurgical Engineering Engineering 856 73000
4 Naval Architecture And Marine Engineering Engineering 1258 70000
5 Chemical Engineering Engineering 32260 65000
6 Nuclear Engineering Engineering 2573 65000
7 Actuarial Science Business 3777 62000
8 Astronomy And Astrophysics Physical Sciences 1792 62000
9 Mechanical Engineering Engineering 91227 60000
10 Electrical Engineering Engineering 81527 60000

 Major Major_category Total Median
1 Communication Disorders Sciences And Services Health 38279 28000
2 Early Childhood Education Education 37589 28000
3 Other Foreign Languages Humanities & Liberal Arts 11204 27500
4 Drama And Theater Arts Arts 43249 27000
5 Composition And Rhetoric Humanities & Liberal Arts 18953 27000
6 Zoology Biology & Life Science 8409 26000
7 Educational Psychology Psychology & Social Work 2854 25000
8 Clinical Psychology Psychology & Social Work 2838 25000
9 Counseling Psychology Psychology & Social Work 4626 23400
10 Library Science Education 1098 22000

If you have the DT package installed, you can make an interactive table just like the one in the FiveThirtyEight article.

library(DT)
grads |>
 select(Major, Major_category, Total, Median) |>
 datatable()

Let’s continue with more exploratory data analysis (EDA). Let’s plot median income by the total number of majors. Is there a correlation between the number of people majoring in a topic and that major’s median income? The expand_limits lets you put $0 on the Y-axis. You might try making the x-axis scale logarithmic.

ggplot(grads, aes(Total, Median)) +
 geom_point() +
 geom_smooth(method="lm") +
 expand_limits(y=0) +
 scale_x_log10(label=scales::number_format()) +
 scale_y_continuous(label=dollar_format()) +
 labs(x="Total number of majors",
 y="Median income",
 title="Median income as a function of major popularity")

You could run a regression analysis to see if there’s a trend.

lm(Median~(Total), data=grads) |> summary()

What categories of majors make more money than others? Let’s make a boxplot of median income by major category. Let’s expand the limits to include 0 on the y-axis, and flip the coordinate system.

grads |>
 ggplot(aes(Major_category, Median)) +
 geom_boxplot(aes(fill = Major_category)) +
 expand_limits(y = 0) +
 coord_flip() +
 scale_y_continuous(labels = dollar_format()) +
 theme(legend.position = "none") +
 labs(x="Major category",
 y="Median income",
 title="Median income by major category",
 caption="Adapted from @drob")

What about unemployment rates? Let’s to the same thing here but before ggplot’ing, let’s mutate the major category to relevel it descending by the unemployment rate. Therefore the highest unemployment rate will be the first level of the factor. Let’s expand limits again, and flip the coordinate system.

grads |>
 mutate(Major_category=fct_reorder(Major_category, -Unemployment_rate)) |>
 ggplot(aes(Major_category, Unemployment_rate, fill = Major_category)) +
 geom_boxplot() +
 expand_limits(y = 0) +
 coord_flip() +
 scale_y_continuous(labels = percent_format()) +
 theme(legend.position = "none") +
 labs(x="Major category",
 y="Unemployment rate",
 title="Unemployment rate by major category")

Most of these make sense except for the high median and large variability of “Computers & Mathematics” category. Especially considering how these had the second highest median salary. Let’s see what these were. Perhaps it was the larger number of Computer and Information Systems, and Communication Technologies majors under this category that were dragging up the Unemployment rate.

grads |>
 filter(Major_category=="Computers & Mathematics") |>
 select(Major, Median, Sample_size, Unemployment_rate)

Exercise 14

What about “underemployment?” Which majors have more students finding jobs requiring college degrees? This time make a boxplot of each major category’s percentage of majors having jobs requiring a college degree (pct_college). Do the same factor reordering.

What are the highest earning majors? First, filter to majors having at least 100 samples to use for income data. Try changing head(20) to tail(20) to get the lowest earners.

grads |>
 filter(Sample_size >= 100) |>
 head(20) |>
 ggplot(aes(Major, Median, color = Major_category)) +
 geom_point() +
 geom_errorbar(aes(ymin = P25th, ymax = P75th)) +
 expand_limits(y = 0) +
 scale_y_continuous(labels = dollar_format()) +
 coord_flip() +
 labs(title = "What are the highest-earning majors?",
 subtitle = "Top 20 majors with at least 100 graduates surveyed.\nBars represent the 25th to 75th percentile.",
 x = "",
 y = "Median salary of gradates",
 caption="Adapted from @drob")

How do the top majors break down by gender? This plot first gets the top 20 most popular majors by total overall students. It reorders the “Major” variable by the total number of people taking it. It then gathers the “Men” and “Women” variable into a column with the number of men or women, with a key column called “Gender” indicating whether you’re looking at men or women. It plots the total number in that major, and color-codes by gender.

grads |>
 arrange(desc(Total)) |>
 head(20) |>
 mutate(Major = fct_reorder(Major, Total)) |>
 gather(Gender, Number, Men, Women) |>
 ggplot(aes(Major, Number, fill = Gender)) +
 geom_col() +
 coord_flip() +
 scale_y_continuous(labels=number_format()) +
 labs(x="", y="Total number of majors", title="Gender breakdown by top majors")

What do earnings look like by gender? Let’s plot median salary by the Share of women in that major, making the size of the point proportional to the number of students enrolled in that major. Let’s also lump all the major categories together if they’re not one of the top four. I’m also passing the label= aesthetic mapping. You’ll see why in a few moments. For now, there is no geom that takes advantage of the label aesthetic.

p <- grads |>
 mutate(Major_category = fct_lump(Major_category, 4)) |>
 ggplot(aes(ShareWomen, Median, label=Major)) +
 geom_point(aes(size=Total, color=Major_category)) +
 geom_smooth(method="lm") +
 expand_limits(y=0) +
 scale_size_continuous(labels=number_format()) +
 scale_y_continuous(labels=dollar_format()) +
 scale_x_continuous(labels=percent_format()) +
 labs(x="Proportion of women with major",
 title="Median income by the proportion of women in each major")
p

If you have the plotly package installed, you can make an interactive graphic. Try hovering over the points, or using your mouse to click+drag a box around a segment of the plot to zoom in on.

library(plotly)
ggplotly(p)

Let’s run a regression analysis to see if the proportion of women in the major is correlated with salary. It looks like every percentage point increase in the proportion of women in a particular major is correlated with a $23,650 decrease in salary.

lm(Median ~ ShareWomen, data = grads, weights = Sample_size) |>
 summary()

Call:
lm(formula = Median ~ ShareWomen, data = grads, weights = Sample_size)

Weighted Residuals:
 Min 1Q Median 3Q Max
-260544 -61278 -13324 33834 865216

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 52079 1441 36.147 <2e-16
ShareWomen -23660 2410 -9.816 <2e-16

Residual standard error: 123300 on 169 degrees of freedom
Multiple R-squared: 0.3631, Adjusted R-squared: 0.3594
F-statistic: 96.36 on 1 and 169 DF, p-value: < 2.2e-16

Let’s run a similar analysis looking at the median income as a function of the percentage of majors getting a job requiring a college degree.

grads |>
 mutate(Major_category = fct_lump(Major_category, 4)) |>
 ggplot(aes(pct_college, Median)) +
 geom_point(aes(size=Total, col=Major_category)) +
 geom_smooth() +
 scale_x_continuous(label=percent_format()) +
 scale_y_continuous(label=dollar_format()) +
 scale_size_continuous(label=number_format()) +
 expand_limits(y=0) +
 labs(x="% of Major's Grads Employed in Jobs Requiring a College Degree",
 y="Median salary",
 title="Median income by percent with jobs requiring a college degree",
 caption="Adapted from @backerman150")

Here’s Table 2 in the FiveThirtyEight piece. It uses the mutate_at function to run an arbitrary function on any number of variables defined in the vars() function. See the help for ?mutate_at to learn more.

library(DT)
grads |>
 select(Major, Total, Median, P25th, P75th, Part_time, Non_college_jobs, Low_wage_jobs) |>
 mutate_at(vars(Part_time, Non_college_jobs, Low_wage_jobs), funs(percent(./Total))) |>
 mutate_at(vars(Median, P25th, P75th), funs(dollar)) |>
 datatable()

7 Reproducible Reporting with RMarkdown

Contemporary life science is plagued by reproducibility issues. This workshop covers some of the barriers to reproducible research and how to start to address some of those problems during the data management and analysis phases of the research life cycle. In this workshop we will cover using R and dynamic document generation with RMarkdown and RStudio to weave together reporting text with executable R code to automatically generate reports in the form of PDF, Word, or HTML documents.

Spend a few minutes to learn a little bit about Markdown. All you really need to know is that Markdown is a lightweight markup language that lets you create styled text (like bold, italics, links, etc.) using a very lightweight plain-text syntax: (like **bold**, _italics_, [links](https://blog.stephenturner.us/), etc.). The resulting text file can be rendered into many downstream formats, like PDF (for printing) or HTML (websites).

	(30 seconds) Read the summary paragraph on the Wikipedia page.

	(1 minute) Bookmark and refer to this markdown reference: http://commonmark.org/help/.

	(5-10 minutes) Run through this 10-minute in-browser markdown tutorial: http://commonmark.org/help/tutorial/.

	(5-10 minutes) Go to http://dillinger.io/, an in-browser Markdown editor, and play around. Write a simple markdown document, and export it to HTML and/or PDF.

	(10 minutes) See RStudio’s excellent documentation on Rmarkdown at http://rmarkdown.rstudio.com/. Click “Getting Started” and watch the 1 minute video on the Introduction page. Continue reading through each section here on the navigation bar to the left (Introduction through Cheatsheets, and optionally download and print out the cheat sheet). Finally, browse through the RMarkdown Gallery.

7.1 Who cares about reproducible research?

Science is plagued by reproducibility problems. Especially genomics!

	Scientists in the United States spend $28 billion each year on basic biomedical research that cannot be repeated successfully.1

	A reproducibility study in psychology found that only 39 of 100 studies could be reproduced.2

	The Journal Nature on the issue of reproducibility:3

	“Nature and the Nature research journals will introduce editorial measures to address the problem by improving the consistency and quality of reporting in life-sciences articles… we will give more space to methods sections. We will examine statistics more closely and encourage authors to be transparent, for example by including their raw data.”

	Nature also released a checklist, unfortunately with wimpy computational check (see #18).

	On microarray reproducibility:4

	18 Nat. Genet. microarray experiments

	Less than 50% reproducible

	Problems:

	Missing data (38%)

	Missing software/hardware details (50%)

	Missing method/processing details (66%)

	NGS: run-of-the-mill variant calling (align, process, call variants):5

	299 articles published in 2011 citing the 1000 Genomes project pilot publication

	Only 19 were NGS studies with similar design

	Only 10 used tools recommended by 1000G.

	Only 4 used full 1000G workflow (realignment & quality score recalibration).

Consider this figure:

How do we reproduce it? What do we need?

	The data.

	Data points themselves.

	Other metadata.

	The code.

	Should be readable.

	Comments in the code / well-documented so a normal person can figure out how it runs.

	How were the trend lines drawn?

	What version of software / packages were used?

This kind of information is rarely available in scientific publications, but it’s now extraordinarly easy to put this kind of information on the web.

Could I replicate Figure 1 from your last publication? If not, what would you and your co-authors need to provide or do so I could replicate Figure 1 from your last publication?

As scientists we should aim for robust and reproducible research

	“Robust research is about doing small things that stack the deck in your favor to prevent mistakes.”

—Vince Buffalo, author of Bioinformatics Data Skills (2015).

	Reproducible research can be repeated by other researchers with the same results.

7.1.1 Reproducibility is hard!

	Genomics data is too large and high dimensional to easily inspect or visualize. Workflows involve multiple steps and it’s hard to inspect every step.

	Unlike in the wet lab, we don’t always know what to expect of our genomics data analysis.

	It can be hard to distinguish good from bad results.

	Scientific code is usually only run once to generate results for a publication, and is more likely to contain silent bugs. (code that may produces unknowingly incorrect output rather than stopping with an error message).

7.1.2 What’s in it for you?

Yeah, it takes a lot of effort to be robust and reproducible. However, it will make your life (and science) easier!

	Most likely, you will have to re-run your analysis more than once.

	In the future, you or a collaborator may have to re-visit part of the project.

	Your most likely collaborator is your future self, and your past self doesn’t answer emails.

	You can make modularized parts of the project into re-useable tools for the future.

	Reproducibility makes you easier to work and collaborate with.

7.1.3 Some recommendations for reproducible research

	Write code for humans, write data for computers.

	Code should be broken down into small chunks that may be re-used.

	Make names/variables consistent, distinctive and meaningful.

	Adopt a style be consistent.6

	Write concise and clear comments.

	Make incremental changes. Work in small steps with frequent feedback. Use version control. See http://swcarpentry.github.io/git-novice/ for resources on version control.

	Make assertions and be loud, in code and in your methods. Add tests in your code to make sure it’s doing what you expect. See http://software-carpentry.org/v4/test/ for resources on testing code.

	Use existing libraries (packages) whenever possible. Don’t reinvent the wheel. Use functions that have already been developed and tested by others.

	Prevent catastrophe and help reproducibility by making your data read-only. Rather than modifying your original data directly, always use a workflow that reads in data, processes/modifies, then writes out intermediate and final files as necessary.

	Encapsulate the full project into one directory that is supported with version control. See: Noble, William Stafford. “A quick guide to organizing computational biology projects.” PLoS Comput Biol 5.7 (2009): e1000424.

	Release your code and data. Simple. Without your code and data, your research is not reproducible.

	GitHub (https://github.com/) is a great place for storing, distributing, collaborating, and version-controlling code.

	RPubs (http://rpubs.com/) allows you to share dynamic documents you write in RStudio online.

	Figshare (http://figshare.com/) and Zenodo (https://zenodo.org/) allow you to upload any kind of research output, publishable or not, free and unlimited. Instantly get permanently available, citable DOI for your research output.

	“Data/code is available upon request” or “Data/code is available at the lab’s website” are completely unacceptable in the 21st century.

	Write code that uses relative paths.

	Don’t use hard-coded absolute paths (i.e. /Users/stephen/Data/seq-data.csv or C:\Stephen\Documents\Data\Project1\data.txt).

	Put the data in the project directory and reference it relative to where the code is, e.g., data/gapminder.csv, etc.

	Always set your seed. If you’re doing anything that involves random/monte-carlo approaches, always use set.seed().

	Document everything and use code as documentation.

	Document why you do something, not mechanics.

	Document your methods and workflows.

	Document the origin of all data in your project directory.

	Document when and how you downloaded the data.

	Record data version info.

	Record software version info with session_info().

	Use dynamic documentation to make your life easier.

7.2 RMarkdown

RMarkdown is a variant of Markdown that lets you embed R code chunks that execute when you compile the document. What, what? Markdown? Compile? What’s all this about?

7.2.1 Markdown

Ever heard of HTML? It’s what drives the internet. HTML is a markup language - that’s what the ML stands for. The terminology evolved from “marking up” paper manuscripts by editors, where the editor would instruct an author or typesetter how to render the resulting text. Markup languages let you annotate text that you want to display with instructions about how to display it.

I emphasize text because this is fundamentally different than word processing. When you use MS Word, for example, you’re creating a special proprietary binary file (the .docx) file that shows you how a document looks. By contrast, writing in a markup language like HTML or Markdown, you’re writing plain old text, using a text editor. The toolchain used to render the markup text into what you see on a display or in a PDF has always been and will always bee free and open.

You can learn Markdown in about 5 minutes. Let’s open up a web-based Markdown editor like http://dillinger.io/ or use a desktop Markdown editor like MarkdownPad (Windows) or MacDown (Mac).

7.2.2 RMarkdown workflow

RMarkdown is an enhanced version of Markdown that lets you embed R code into the document. When the document is compiled/rendered, the R code is executed by R, the output is then automatically rendered as Markdown with the rest of the document. The Markdown is then further processed to final output formats like HTML, PDF, DOCX, etc.

7.3 Authoring RMarkdown documents

Note: Before going any further, open up the options (Tools, Global Options), click the RMarkdown section, and uncheck the box, “Show output inline for all R Markdown documents.”

7.3.1 From scratch

First, open RStudio. Create a new project. Quit RStudio, then launch RStudio using the project file (.Rproj) you just created.

Next, download the gapminder data from the data page. Put this file in your R project directory. Maybe put it in a subdirectory called “data.” Importantly, now your code and data will live in the same place.

Let’s create a bare-bones RMarkdown document that compiles to HTML. In RStudio, select File, New File, R Markdown…. Don’t worry about the title and author fields. When the new document launches, select everything then delete it. Let’s author an RMarkdown file from scratch. Save it as fromscratch.Rmd.

 # Introduction

 This is my first RMarkdown document!

 # Let's embed some R code

 Let's load the **Gapminder** data:


 ```{r} 
 library(dplyr) 
 library(readr) 
 gm <- read_csv('data/gapminder.csv') 
 head(gm) 
 ``` 


 The mean life expectancy is `r mean(gm$lifeExp)` years.

 The years surveyed in this data include: `r unique(gm$year)`.

 # Session Information


 ```{r} 
 sessionInfo() 
 ``` 


Hit the Knit HTML button in the editor window. You should see the rendered document pop up.

So let’s break that down to see exactly what happened there. Recall the RMarkdown Workflow shown above. You start with an RMarkdown document (Rmd). When you hit the Knit HTML button, The knitr R package parses through your source document and executes all the R code chunks defined by the R code chunk blocks. The source code itself and the results are then turned back into regular markdown, inserted into an intermediate markdown file (.md), and finally rendered into HTML by Pandoc.

Try this. Instead of using the button, load the knitr package and just knit the document to markdown format. Run this in the console.

library(knitr)
knit("fromscratch.Rmd")

Now, open up that regular markdown file and take a look.

Introduction

This is my first RMarkdown document!

Let's embed some R code

Let's load the **Gapminder** data:


```r
library(dplyr)
library(readr)
gm <- read_csv("data/gapminder.csv")
head(gm)
```

```
##       country continent year lifeExp      pop gdpPercap
## 1 Afghanistan      Asia 1952  28.801  8425333  779.4453
## 2 Afghanistan      Asia 1957  30.332  9240934  820.8530
## 3 Afghanistan      Asia 1962  31.997 10267083  853.1007
## 4 Afghanistan      Asia 1967  34.020 11537966  836.1971
## 5 Afghanistan      Asia 1972  36.088 13079460  739.9811
## 6 Afghanistan      Asia 1977  38.438 14880372  786.1134
```

The mean life expectancy is 59.4744394 years.

The years surveyed in this data include: 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007.

7.3.2 From a template with YAML metadata

Go ahead and start a new R Markdown document. Fill in some title and author information.

This is going to put a YAML header in the file that looks something like this:

title: "Gapminder Analysis"
author: "Stephen Turner"
date: "January 1, 2017"
output: html_document

The stuff between the three ---s is metadata. You can read more about what kind of metadata can be included in the RMarkdown documentation. Try clicking the little wrench icon and setting some options, like including a table of contents and figure captions. Notice how the metadata front matter changes.

title: "Gapminder analysis"
author: "Stephen Turner"
date: "January 1, 2017"
output:
 html_document:
 fig_caption: yes
 toc: yes

Now, delete everything in that document below the metadata header and paste in what we had written before (above). Save this document under a different name (rmdwithmeta.Rmd for example). You’ll now see that your HTML document takes the metadata and makes a nicely formatted title.

Let’s add a plot in there. Open up a new R chunk with this:


 ```{r, fig.cap='Life Exp vs GDP'} 
 library(ggplot2) 
 ggplot(gm, aes(gdpPercap, lifeExp)) + geom_point() 
 ``` 


Using RStudio you can fiddle around with different ways to make the graphic and keep the one you want. Maybe it looks like this:


 ```{r, fig.cap='Life Exp vs GDP'} 
 library(ggplot2) 
 ggplot(gm, aes(gdpPercap, lifeExp)) +  
   geom_point() +  
   scale_x_log10() +  
   aes(col=continent) 
 ``` 


7.3.3 Chunk options

You can modify the behavior of an R chunk with options. Options are passed in after a comma on the fence, as shown below.


 ```{r optionalChunkName, echo=TRUE, results='hide'} 
 # R code here 
 ``` 


Some commonly used options include:

	echo: (TRUE by default) whether to include R source code in the output file.

	results takes several possible values:

	markup (the default) takes the result of the R evaluation and turns it into markdown that is rendered as usual.

	hide will hide results.

	hold will hold all the output pieces and push them to the end of a chunk. Useful if you’re running commands that result in lots of little pieces of output in the same chunk.

	asis writes the raw results from R directly into the document. Only really useful for tables.

	include: (TRUE by default) if this is set to FALSE the R code is still evaluated, but neither the code nor the results are returned in the output document.

	fig.width, fig.height: used to control the size of graphics in the output.

Try modifying your first R chunk to use different values for echo, results, and include.


 ```{r} 
 gm <- read.csv('data/gapminder.csv') 
 head(gm) 
 tail(gm) 
 ``` 


See the full list of options here: http://yihui.name/knitr/options/. There are lots!

A special note about caching: The cache= option is automatically set to FALSE. That is, every time you render the Rmd, all the R code is run again from scratch. If you use cache=TRUE, for this chunk, knitr will save the results of the evaluation into a directory that you specify. When you re-render the document, knitr will first check if there are previously cached results under the cache directory before really evaluating the chunk; if cached results exist and this code chunk has not been changed since last run (use MD5 sum to verify), the cached results will be (lazy-) loaded, otherwise new cache will be built; if a cached chunk depends on other chunks (see the dependson option) and any one of these chunks has changed, this chunk must be forcibly updated (old cache will be purged). See the documentation for caching.

7.3.4 Tables

The knitr package that runs the RMarkdown document in the background also has a function called kable that helps with printing tables nicely. It’s only useful when you set echo=FALSE and results='asis'. Try this.


 ```{r} 
 head(gm) 
 ``` 


Versus this:


 ```{r, results='asis'} 
 library(knitr) 
 kable(head(gm)) 
 ``` 


7.3.5 Changing output formats

Now try this. If you were successfully able to get a LaTeX distribution installed, you can render this document as a PDF instead of HTML. Try changing the line in the metadata from html_document to pdf_document. Notice how the Knit HTML button in RStudio now changes to Knit PDF. Try it. If you didn’t get a LaTeX engine installed this won’t work. Go back to the setup instructions after class to give this a try.

7.4 Distributing Analyses: Rpubs

RPubs.com is a free service from RStudio that allows you to seamlessly publish the results of your R analyses online. Sign up for an account at RPubs.com, then sign in on your browser.

Make sure your RMarkdown metadata is set to render to HTML rather than PDF. Render the document. Now notice the little Publish button in the HTML viewer pane. Click this. Sign in when asked, and give your document a name (usually the same name as the title of your Rmd).

Here are a few examples of documents I’ve published:

	http://rpubs.com/turnersd/daily_show_guests: Analysis of every guest who’s ever been on The Daily Show with Jon Stewart.

	http://rpubs.com/turnersd/twoaxes: How to plot two different tracks of data with one axis on the left and one axis on the right.

	http://rpubs.com/turnersd/anscombe: Analysis of Anscombe’s Quartet data.

Note how RPubs doesn’t share your code! RPubs is a great way to share your analysis but doesn’t let you share the source code. This is a huge barrier to reproducibility. There are plenty of ways to do this. One way is to go to gist.github.com and upload your code as a text file, then link back to the gist in your republished RPubs document.

	Freedman, et al. “The economics of reproducibility in preclinical research.” PLoS Biol 13.6 (2015): e1002165.↩︎

	http://www.nature.com/news/first-results-from-psychology-s-largest-reproducibility-test-1.17433↩︎

	http://www.nature.com/news/reproducibility-1.17552↩︎

	Ioannidis, John PA, et al. “Repeatability of published microarray gene expression analyses.” Nature genetics 41.2 (2009): 149-155.↩︎

	Nekrutenko, Anton, and James Taylor. “Next-generation sequencing data interpretation: enhancing reproducibility and accessibility.” Nature Reviews Genetics 13.9 (2012): 667-672.↩︎

	http://adv-r.had.co.nz/Style.html↩︎

8 Essential statistics

This chapter provides hands-on instruction and exercises covering basic statistical analysis in R. This will cover descriptive statistics, t-tests, linear models, chi-square, clustering, dimensionality reduction, and resampling strategies. We will also cover methods for “tidying” model results for downstream visualization and summarization.

Handouts: Download and print out these handouts and bring them to class:

	Cheat sheet

	Exercises handout

8.1 Our data: NHANES

8.1.1 About NHANES

The data we’re going to work with comes from the National Health and Nutrition Examination Survey (NHANES) program at the CDC. You can read a lot more about NHANES on the CDC’s website or Wikipedia. NHANES is a research program designed to assess the health and nutritional status of adults and children in the United States. The survey is one of the only to combine both survey questions and physical examinations. It began in the 1960s and since 1999 examines a nationally representative sample of about 5,000 people each year. The NHANES interview includes demographic, socioeconomic, dietary, and health-related questions. The physical exam includes medical, dental, and physiological measurements, as well as several standard laboratory tests. NHANES is used to determine the prevalence of major diseases and risk factors for those diseases. NHANES data are also the basis for national standards for measurements like height, weight, and blood pressure. Data from this survey is used in epidemiology studies and health sciences research, which help develop public health policy, direct and design health programs and services, and expand the health knowledge for the Nation.

We are using a small slice of this data. We’re only using a handful of variables from the 2011-2012 survey years on about 5,000 individuals. The CDC uses a sampling strategy to purposefully oversample certain subpopulations like racial minorities. Naive analysis of the original NHANES data can lead to mistaken conclusions because the percentages of people from each racial group in the data are different from general population. The 5,000 individuals here are resampled from the larger NHANES study population to undo these oversampling effects, so you can treat this as if it were a simple random sample from the American population.

You can download the data here: nhanes.csv. There’s also a data dictionary here: nhanes_dd.csv that lists and describes each variable in our NHANES dataset. This table is copied below.

	Variable
	Definition

	id
	A unique sample identifier

	Gender
	Gender (sex) of study participant coded as male or female

	Age
	Age in years at screening of study participant. Note: Subjects 80 years or older were recorded as 80.

	Race
	Reported race of study participant, including non-Hispanic Asian category: Mexican, Hispanic, White, Black, Asian, or Other. Not availale for 2009-10.

	Education
	Educational level of study participant Reported for participants aged 20 years or older. One of 8thGrade, 9-11thGrade, HighSchool, SomeCollege, or CollegeGrad.

	MaritalStatus
	Marital status of study participant. Reported for participants aged 20 years or older. One of Married, Widowed, Divorced, Separated, NeverMarried, or LivePartner (living with partner).

	RelationshipStatus
	Simplification of MaritalStatus, coded as Committed if MaritalStatus is Married or LivePartner, and Single otherwise.

	Insured
	Indicates whether the individual is covered by health insurance.

	Income
	Numerical version of HHIncome derived from the middle income in each category

	Poverty
	A ratio of family income to poverty guidelines. Smaller numbers indicate more poverty

	HomeRooms
	How many rooms are in home of study participant (counting kitchen but not bathroom). 13 rooms = 13 or more rooms.

	HomeOwn
	One of Home, Rent, or Other indicating whether the home of study participant or someone in their family is owned, rented or occupied by some other arrangement.

	Work
	Indicates whether the individual is current working or not.

	Weight
	Weight in kg

	Height
	Standing height in cm. Reported for participants aged 2 years or older.

	BMI
	Body mass index (weight/height2 in kg/m2). Reported for participants aged 2 years or older.

	Pulse
	60 second pulse rate

	BPSys
	Combined systolic blood pressure reading, following the procedure outlined for BPXSAR.

	BPDia
	Combined diastolic blood pressure reading, following the procedure outlined for BPXDAR.

	Testosterone
	Testerone total (ng/dL). Reported for participants aged 6 years or older. Not available for 2009-2010.

	HDLChol
	Direct HDL cholesterol in mmol/L. Reported for participants aged 6 years or older.

	TotChol
	Total HDL cholesterol in mmol/L. Reported for participants aged 6 years or older.

	Diabetes
	Study participant told by a doctor or health professional that they have diabetes. Reported for participants aged 1 year or older as Yes or No.

	DiabetesAge
	Age of study participant when first told they had diabetes. Reported for participants aged 1 year or older.

	nPregnancies
	How many times participant has been pregnant. Reported for female participants aged 20 years or older.

	nBabies
	How many of participants deliveries resulted in live births. Reported for female participants aged 20 years or older.

	SleepHrsNight
	Self-reported number of hours study participant usually gets at night on weekdays or workdays. Reported for participants aged 16 years and older.

	PhysActive
	Participant does moderate or vigorous-intensity sports, fitness or recreational activities (Yes or No). Reported for participants 12 years or older.

	PhysActiveDays
	Number of days in a typical week that participant does moderate or vigorous-intensity activity. Reported for participants 12 years or older.

	AlcoholDay
	Average number of drinks consumed on days that participant drank alcoholic beverages. Reported for participants aged 18 years or older.

	AlcoholYear
	Estimated number of days over the past year that participant drank alcoholic beverages. Reported for participants aged 18 years or older.

	SmokingStatus
	Smoking status: Current Former or Never.

8.1.2 Import & inspect

First, let’s load the dplyr and readr libraries.

library(readr)
library(dplyr)

If you see a warning that looks like this: Error in library(dplyr) : there is no package called 'dplyr' (or similar with readr), then you don’t have the package installed correctly. See the (Appendix A)

Now, let’s actually load the data. When we load data we assign it to a variable just like any other, and we can choose a name for that data. Since we’re going to be referring to this data a lot, let’s give it a short easy name to type. I’m going to call it nh. Once we’ve loaded it we can type the name of the object itself (nh) to see it printed to the screen.

nh <- read_csv(file="data/nhanes.csv")
nh

A tibble: 5,000 × 32
 id Gender Age Race Education MaritalStatus RelationshipStatus Insured
 <dbl> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
 1 62163 male 14 Asian <NA> <NA> <NA> Yes
 2 62172 female 43 Black High Sch… NeverMarried Single Yes
 3 62174 male 80 White College … Married Committed Yes
 4 62174 male 80 White College … Married Committed Yes
 5 62175 male 5 White <NA> <NA> <NA> Yes
 6 62176 female 34 White College … Married Committed Yes
 7 62178 male 80 White High Sch… Widowed Single Yes
 8 62180 male 35 White College … Married Committed Yes
 9 62186 female 17 Black <NA> <NA> <NA> Yes
10 62190 female 15 Mexican <NA> <NA> <NA> Yes
ℹ 4,990 more rows
ℹ 24 more variables: Income <dbl>, Poverty <dbl>, HomeRooms <dbl>,
HomeOwn <chr>, Work <chr>, Weight <dbl>, Height <dbl>, BMI <dbl>,
Pulse <dbl>, BPSys <dbl>, BPDia <dbl>, Testosterone <dbl>, HDLChol <dbl>,
TotChol <dbl>, Diabetes <chr>, DiabetesAge <dbl>, nPregnancies <dbl>,
nBabies <dbl>, SleepHrsNight <dbl>, PhysActive <chr>, PhysActiveDays <dbl>,
AlcoholDay <dbl>, AlcoholYear <dbl>, SmokingStatus <chr>

Take a look at that output. The nice thing about loading dplyr and reading data with readr functions is that data are displayed in a much more friendly way. This dataset has 5,000 rows and 32 columns. When you import/convert data this way and try to display the object in the console, instead of trying to display all 5,000 rows, you’ll only see about 10 by default. Also, if you have so many columns that the data would wrap off the edge of your screen, those columns will not be displayed, but you’ll see at the bottom of the output which, if any, columns were hidden from view.

A note on characters versus factors: One thing that you immediately notice is that all the categorical variables are read in as character data types. This data type is used for storing strings of text, for example, IDs, names, descriptive text, etc. There’s another related data type called factors. Factor variables are used to represent categorical variables with two or more levels, e.g., “male” or “female” for Gender, or “Single” versus “Committed” for RelationshipStatus. For the most part, statistical analysis treats these two data types the same. It’s often easier to leave categorical variables as characters. However, in some cases you may get a warning message alerting you that a character variable was converted into a factor variable during analysis. Generally, these warnings are nothing to worry about. You can, if you like, convert individual variables to factor variables, or simply use dplyr’s mutate_if to convert all character vectors to factor variables:

nh <- nh |> mutate_if(is.character, as.factor)
nh

Now just take a look at just a few columns that are now factors. Remember, you can look at individual variables with the mydataframe$specificVariable syntax.

nh$RelationshipStatus
nh$Race
levels(nh$Race)

If you want to see the whole dataset, there are two ways to do this. First, you can click on the name of the data.frame in the Environment panel in RStudio. Or you could use the View() function (with a capital V).

View(nh)

Recall several built-in functions that are useful for working with data frames.

	Content:

	head(): shows the first few rows

	tail(): shows the last few rows

	Size:

	dim(): returns a 2-element vector with the number of rows in the first element, and the number of columns as the second element (the dimensions of the object)

	nrow(): returns the number of rows

	ncol(): returns the number of columns

	Summary:

	colnames() (or just names()): returns the column names

	glimpse() (from dplyr): Returns a glimpse of your data, telling you the structure of the dataset and information about the class, length and content of each column

head(nh)
tail(nh)
dim(nh)
names(nh)
glimpse(nh)

8.2 Descriptive statistics

We can access individual variables within a data frame using the $ operator, e.g., mydataframe$specificVariable. Let’s print out all the Race values in the data. Let’s then see what are the unique values of each. Then let’s calculate the mean, median, and range of the Age variable.

Display all Race values
nh$Race

Get the unique values of Race
unique(nh$Race)
length(unique(nh$Race))
Do the same thing the dplyr way
nh$Race |> unique()
nh$Race |> unique() |> length()

Age mean, median, range
mean(nh$Age)
median(nh$Age)
range(nh$Age)

You could also do the last few operations using dplyr, but remember, this returns a single-row, single-column tibble, not a single scalar value like the above. This is only really useful in the context of grouping and summarizing.

Compute the mean age
nh |>
 summarize(mean(Age))

Now grouped by other variables
nh |>
 group_by(Gender, Race) |>
 summarize(mean(Age))

The summary() function (note, this is different from dplyr’s summarize()) works differently depending on which kind of object you pass to it. If you run summary() on a data frame, you get some very basic summary statistics on each variable in the data.

summary(nh)

8.2.1 Missing data

Let’s try taking the mean of a different variable, either the dplyr way or the simpler $ way.

the dplyr way: returns a single-row single-column tibble/dataframe
nh |> summarize(mean(Income))

returns a single value
mean(nh$Income)

What happened there? NA indicates missing data. Take a look at the Income variable.

Look at just the Income variable
nh$Income

Or view the dataset
View(nh)

Notice that there are lots of missing values for Income. Trying to get the mean a bunch of observations with some missing data returns a missing value by default. This is almost universally the case with all summary statistics – a single NA will cause the summary to return NA. Now look at the help for ?mean. Notice the na.rm argument. This is a logical (i.e., TRUE or FALSE) value indicating whether or not missing values should be removed prior to computing the mean. By default, it’s set to FALSE. Now try it again.

mean(nh$Income, na.rm=TRUE)

[1] 57078

The is.na() function tells you if a value is missing. Get the sum() of that vector, which adds up all the TRUEs to tell you how many of the values are missing.

is.na(nh$Income)
sum(is.na(nh$Income))

Now, let’s talk about exploratory data analysis (EDA).

8.2.2 EDA

It’s always worth examining your data visually before you start any statistical analysis or hypothesis testing. We could spend an entire day on exploratory data analysis. The data visualization section (Chapter 5) covers this in much broader detail. Here we’ll just mention a few of the big ones: histograms and scatterplots.

8.2.2.1 Histograms

We can learn a lot from the data just looking at the value distributions of particular variables. Let’s make some histograms with ggplot2. Looking at BMI shows a few extreme outliers. Looking at weight initially shows us that the units are probably in kg. Replotting that in lbs with more bins shows a clear bimodal distribution. Are there kids in this data? The age distribution shows us the answer is yes.

library(ggplot2)
ggplot(nh, aes(BMI)) + geom_histogram(bins=30)

ggplot(nh, aes(Weight)) + geom_histogram(bins=30)

In pounds, more bins
ggplot(nh, aes(Weight*2.2)) + geom_histogram(bins=80)

ggplot(nh, aes(Age)) + geom_histogram(bins=30)

8.2.2.2 Scatterplots

Let’s look at how a few different variables relate to each other. E.g., height and weight:

ggplot(nh, aes(Height, Weight, col=Gender)) + geom_point()

Let’s filter out all the kids, draw trend lines using a linear model:

nh |>
 filter(Age>=18) |>
 ggplot(aes(Height, Weight, col=Gender)) +
 geom_point() +
 geom_smooth(method="lm")

Check out the data visualization section (Chapter 5) for much more on this topic.

Exercise 1

What’s the mean 60-second pulse rate for all participants in the data?

[1] 73.6

Exercise 2

What’s the range of values for diastolic blood pressure in all participants? (Hint: see help for min(), max(), and range() functions, e.g., enter ?range without the parentheses to get help).

[1] 0 116

Exercise 3

What are the median, lower, and upper quartiles for the age of all participants? (Hint: see help for median, or better yet, quantile).

 0% 25% 50% 75% 100%
 0 17 36 54 80

Exercise 4

What’s the variance and standard deviation for income among all participants?

[1] 1.12e+09

[1] 33490

8.3 Continuous variables

8.3.1 T-tests

First let’s create a new dataset from nh called nha that only has adults. To prevent us from making any mistakes downstream, let’s remove the nh object.

nha <- filter(nh, Age>=18)
rm(nh)
View(nha)

Let’s do a few two-sample t-tests to test for differences in means between two groups. The function for a t-test is t.test(). See the help for ?t.test. We’ll be using the forumla method. The usage is t.test(response~group, data=myDataFrame).

	Are there differences in age for males versus females in this dataset?

	Does BMI differ between diabetics and non-diabetics?

	Do single or married/cohabitating people drink more alcohol? Is this relationship significant?

t.test(Age~Gender, data=nha)

 Welch Two Sample t-test

data: Age by Gender
t = 2, df = 3697, p-value = 0.06
alternative hypothesis: true difference in means between group female and group male is not equal to 0
95 percent confidence interval:
 -0.0278 2.2219
sample estimates:
mean in group female mean in group male
 47.1 46.0

t.test(BMI~Diabetes, data=nha)

 Welch Two Sample t-test

data: BMI by Diabetes
t = -11, df = 407, p-value <2e-16
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
 -5.56 -3.92
sample estimates:
 mean in group No mean in group Yes
 28.1 32.8

t.test(AlcoholYear~RelationshipStatus, data=nha)

 Welch Two Sample t-test

data: AlcoholYear by RelationshipStatus
t = 5, df = 2675, p-value = 6e-08
alternative hypothesis: true difference in means between group Committed and group Single is not equal to 0
95 percent confidence interval:
 13.1 27.8
sample estimates:
mean in group Committed mean in group Single
 83.9 63.5

See the heading, Welch Two Sample t-test, and notice that the degrees of freedom might not be what we expected based on our sample size. Now look at the help for ?t.test again, and look at the var.equal argument, which is by default set to FALSE. One of the assumptions of the t-test is homoscedasticity, or homogeneity of variance. This assumes that the variance in the outcome (e.g., BMI) is identical across both levels of the predictor (diabetic vs non-diabetic). Since this is rarely the case, the t-test defaults to using the Welch correction, which is a more reliable version of the t-test when the homoscedasticity assumption is violated.

 A note on one-tailed versus two-tailed tests: A two-tailed test is almost always more appropriate. The hypothesis you’re testing here is spelled out in the results (“alternative hypothesis: true difference in means is not equal to 0”). If the p-value is very low, you can reject the null hypothesis that there’s no difference in means. Because you typically don’t know a priori whether the difference in means will be positive or negative (e.g., we don’t know a priori whether Single people would be expected to drink more or less than those in a committed relationship), we want to do the two-tailed test. However, if we only wanted to test a very specific directionality of effect, we could use a one-tailed test and specify which direction we expect. This is more powerful if we “get it right”, but much less powerful for the opposite effect. Notice how the p-value changes depending on how we specify the hypothesis. Again, the two-tailed test is almost always more appropriate.

Two tailed
t.test(AlcoholYear~RelationshipStatus, data=nha)

Difference in means is >0 (committed drink more)
t.test(AlcoholYear~RelationshipStatus, data=nha, alternative="greater")

Difference in means is <0 (committed drink less)
t.test(AlcoholYear~RelationshipStatus, data=nha, alternative="less")

 A note on paired versus unpaired t-tests: The t-test we performed here was an unpaired test. Here the males and females are different people. The diabetics and nondiabetics are different samples. The single and committed individuals are completely independent, separate observations. In this case, an unpaired test is appropriate. An alternative design might be when data is derived from samples who have been measured at two different time points or locations, e.g., before versus after treatment, left versus right hand, etc. In this case, a paired t-test would be more appropriate. A paired test takes into consideration the intra and inter-subject variability, and is more powerful than the unpaired test. See the help for ?t.test for more information on how to do this.

8.3.2 Wilcoxon test

Another assumption of the t-test is that data is normally distributed. Looking at the histogram for AlcoholYear shows that this data clearly isn’t.

ggplot(nha, aes(AlcoholYear)) + geom_histogram()

The Wilcoxon rank-sum test (a.k.a. Mann-Whitney U test) is a nonparametric test of differences in mean that does not require normally distributed data. When data is perfectly normal, the t-test is uniformly more powerful. But when this assumption is violated, the t-test is unreliable. This test is called in a similar way as the t-test.

wilcox.test(AlcoholYear~RelationshipStatus, data=nha)

 Wilcoxon rank sum test with continuity correction

data: AlcoholYear by RelationshipStatus
W = 1e+06, p-value = 2e-04
alternative hypothesis: true location shift is not equal to 0

The results are still significant, but much less than the p-value reported for the (incorrect) t-test above. Also note in the help for ?wilcox.test that there’s a paired option here too.

8.3.3 Linear models

Analysis of variance and linear modeling are complex topics that deserve an entire semester dedicated to theory, design, and interpretation. A very good resource is An Introduction to Statistical Learning: with Applications in R by Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. The PDF of the book and all the R code used throughout are available free on the author’s website. What follows is a necessary over-simplification with more focus on implementation, and less on theory and design.

Where t-tests and their nonparametric substitutes are used for assessing the differences in means between two groups, ANOVA is used to assess the significance of differences in means between multiple groups. In fact, a t-test is just a specific case of ANOVA when you only have two groups. And both t-tests and ANOVA are just specific cases of linear regression, where you’re trying to fit a model describing how a continuous outcome (e.g., BMI) changes with some predictor variable (e.g., diabetic status, race, age, etc.). The distinction is largely semantic – with a linear model you’re asking, “do levels of a categorical variable affect the response?” where with ANOVA or t-tests you’re asking, “does the mean response differ between levels of a categorical variable?”

Let’s examine the relationship between BMI and relationship status (RelationshipStatus was derived from MaritalStatus, coded as Committed if MaritalStatus is Married or LivePartner, and Single otherwise). Let’s first do this with a t-test, and for now, let’s assume that the variances between groups are equal.

t.test(BMI~RelationshipStatus, data=nha, var.equal=TRUE)

 Two Sample t-test

data: BMI by RelationshipStatus
t = -2, df = 3552, p-value = 0.1
alternative hypothesis: true difference in means between group Committed and group Single is not equal to 0
95 percent confidence interval:
 -0.7782 0.0955
sample estimates:
mean in group Committed mean in group Single
 28.5 28.9

It looks like single people have a very slightly higher BMI than those in a committed relationship, but the magnitude of the difference is trivial, and the difference is not significant. Now, let’s do the same test in a linear modeling framework. First, let’s create the fitted model and store it in an object called fit.

fit <- lm(BMI~RelationshipStatus, data=nha)

You can display the object itself, but that isn’t too interesting. You can get the more familiar ANOVA table by calling the anova() function on the fit object. More generally, the summary() function on a linear model object will tell you much more. (Note this is different from dplyr’s summarize function).

fit

Call:
lm(formula = BMI ~ RelationshipStatus, data = nha)

Coefficients:
 (Intercept) RelationshipStatusSingle
 28.513 0.341

anova(fit)

Analysis of Variance Table

Response: BMI
 Df Sum Sq Mean Sq F value Pr(>F)
RelationshipStatus 1 98 98.3 2.35 0.13
Residuals 3552 148819 41.9

summary(fit)

Call:
lm(formula = BMI ~ RelationshipStatus, data = nha)

Residuals:
 Min 1Q Median 3Q Max
-12.81 -4.61 -0.95 3.29 52.09

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.513 0.139 205.44 <2e-16
RelationshipStatusSingle 0.341 0.223 1.53 0.13

Residual standard error: 6.47 on 3552 degrees of freedom
 (153 observations deleted due to missingness)
Multiple R-squared: 0.00066, Adjusted R-squared: 0.000379
F-statistic: 2.35 on 1 and 3552 DF, p-value: 0.126

Go back and re-run the t-test assuming equal variances as we did before. Now notice a few things:

t.test(BMI~RelationshipStatus, data=nha, var.equal=TRUE)

	The p-values from all three tests (t-test, ANOVA, and linear regression) are all identical (p=0.1256). This is because they’re all identical: a t-test is a specific case of ANOVA, which is a specific case of linear regression. There may be some rounding error, but we’ll talk about extracting the exact values from a model object later on.

	The test statistics are all related. The t statistic from the t-test is 1.532, which is the same as the t-statistic from the linear regression. If you square that, you get 2.347, the F statistic from the ANOVA.

	The t.test() output shows you the means for the two groups, Committed and Single. Just displaying the fit object itself or running summary(fit) shows you the coefficients for a linear model. Here, the model assumes the “baseline” RelationshipStatus level is Committed, and that the intercept in a regression model (e.g., β0\beta_{0} in the model Y=β0+β1XY = \beta_{0} + \beta_{1}X) is the mean of the baseline group. Being Single results in an increase in BMI of 0.3413. This is the β1\beta_{1} coefficient in the model. You can easily change the ordering of the levels. See the help for ?factor, and check out the new forcats package, which provides tools for manipulating categorical variables.

P-value computed on a t-statistic with 3552 degrees of freedom
(multiply times 2 because t-test is assuming two-tailed)
2*(1-pt(1.532, df=3552))

[1] 0.126

P-value computed on an F-test with 1 and 3552 degrees of freedom
1-pf(2.347, df1=1, df2=3552)

[1] 0.126

 A note on dummy coding: If you have a kk-level factor, R creates k−1k-1 dummy variables, or indicator variables, by default, using the alphabetically first level as baseline. For example, the levels of RelationshipStatus are “Committed” and “Single”. R creates a dummy variable called “RelationshipStatusSingle” that’s 0 if you’re committed, and 1 if you’re Single. The linear model is saying for every unit increase in RelationshipStatusSingle, i.e., going from committed to single, results in a 0.314-unit increase in BMI. You can change the ordering of the factors to change the interpretation of the model (e.g., treating Single as baseline and going from Single to Committed). We’ll do this in the next section.

8.3.4 ANOVA

Recap: t-tests are for assessing the differences in means between two groups. A t-test is a specific case of ANOVA, which is a specific case of a linear model. Let’s run ANOVA, but this time looking for differences in means between more than two groups.

Let’s look at the relationship between smoking status (Never, Former, or Current), and BMI.

fit <- lm(BMI~SmokingStatus, data=nha)
anova(fit)

Analysis of Variance Table

Response: BMI
 Df Sum Sq Mean Sq F value Pr(>F)
SmokingStatus 2 1411 706 17 4.5e-08
Residuals 3553 147551 42

summary(fit)

Call:
lm(formula = BMI ~ SmokingStatus, data = nha)

Residuals:
 Min 1Q Median 3Q Max
-12.56 -4.56 -1.06 3.32 51.74

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.391 0.245 111.97 < 2e-16
SmokingStatusFormer 1.774 0.329 5.39 7.6e-08
SmokingStatusNever 1.464 0.284 5.16 2.6e-07

Residual standard error: 6.44 on 3553 degrees of freedom
 (151 observations deleted due to missingness)
Multiple R-squared: 0.00947, Adjusted R-squared: 0.00891
F-statistic: 17 on 2 and 3553 DF, p-value: 4.54e-08

The F-test on the ANOVA table tells us that there is a significant difference in means between current, former, and never smokers (p=4.54×10−84.54 \times 10^{-8}). However, the linear model output might not have been what we wanted. Because the default handling of categorical variables is to treat the alphabetical first level as the baseline, “Current” smokers are treated as baseline, and this mean becomes the intercept, and the coefficients on “Former” and “Never” describe how those groups’ means differ from current smokers.

Back to dummy coding / indicator variables: SmokingStatus is “Current”, “Former”, and “Never.” By default, R will create two indicator variables here that in tandem will explain this variable.

	Original SmokingStatus
	Indicator: SmokingStatusFormer
	Indicator: SmokingStatusNever

	Current
	0
	0

	Former
	1
	0

	Never
	0
	1

What if we wanted “Never” smokers to be the baseline, followed by Former, then Current? Have a look at ?factor to relevel the factor levels.

Look at nha$SmokingStatus
nha$SmokingStatus

What happens if we relevel it? Let's see what that looks like.
relevel(nha$SmokingStatus, ref="Never")

If we're happy with that, let's change the value of nha$SmokingStatus in place
nha$SmokingStatus <- relevel(nha$SmokingStatus, ref="Never")

Or we could do this the dplyr way
nha <- nha |>
 mutate(SmokingStatus=relevel(SmokingStatus, ref="Never"))

Re-fit the model
fit <- lm(BMI~SmokingStatus, data=nha)

Optionally, show the ANOVA table
anova(fit)

Print the full model statistics
summary(fit)

Call:
lm(formula = BMI ~ SmokingStatus, data = nha)

Residuals:
 Min 1Q Median 3Q Max
-12.56 -4.56 -1.06 3.32 51.74

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.856 0.144 200.60 < 2e-16
SmokingStatusCurrent -1.464 0.284 -5.16 2.6e-07
SmokingStatusFormer 0.309 0.263 1.17 0.24

Residual standard error: 6.44 on 3553 degrees of freedom
 (151 observations deleted due to missingness)
Multiple R-squared: 0.00947, Adjusted R-squared: 0.00891
F-statistic: 17 on 2 and 3553 DF, p-value: 4.54e-08

Notice that the p-value on the ANOVA/regression didn’t change, but the coefficients did. Never smokers are now treated as baseline. The intercept coefficient (28.856) is now the mean for Never smokers. The SmokingStatusFormer coefficient of .309 shows the apparent increase in BMI that former smokers have when compared to never smokers, but that difference is not significant (p=.24). The SmokingStatusCurrent coefficient of -1.464 shows that current smokers actually have a lower BMI than never smokers, and that this decrease is highly significant.

Finally, you can do the typical post-hoc ANOVA procedures on the fit object. For example, the TukeyHSD() function will run Tukey’s test (also known as Tukey’s range test, the Tukey method, Tukey’s honest significance test, Tukey’s HSD test (honest significant difference), or the Tukey-Kramer method). Tukey’s test computes all pairwise mean difference calculation, comparing each group to each other group, identifying any difference between two groups that’s greater than the standard error, while controlling the type I error for all multiple comparisons. First run aov() (not anova()) on the fitted linear model object, then run TukeyHSD() on the resulting analysis of variance fit.

TukeyHSD(aov(fit))

 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = fit)

$SmokingStatus
 diff lwr upr p adj
Current-Never -1.464 -2.130 -0.799 0.000
Former-Never 0.309 -0.308 0.926 0.469
Former-Current 1.774 1.002 2.546 0.000

This shows that there isn’t much of a difference between former and never smokers, but that both of these differ significantly from current smokers, who have significantly lower BMI.

Finally, let’s visualize the differences in means between these groups. The NA category, which is omitted from the ANOVA, contains all the observations who have missing or non-recorded Smoking Status.

ggplot(nha, aes(SmokingStatus, BMI)) + geom_boxplot() + theme_classic()

8.3.5 Linear regression

Linear models are mathematical representations of the process that (we think) gave rise to our data. The model seeks to explain the relationship between a variable of interest, our Y, outcome, response, or dependent variable, and one or more X, predictor, or independent variables. Previously we talked about t-tests or ANOVA in the context of a simple linear regression model with only a single predictor variable, XX:

Y=β0+β1XY = \beta_{0} + \beta_{1}X

But you can have multiple predictors in a linear model that are all additive, accounting for the effects of the others:

Y=β0+β1X1+β2X2+ϵY = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \epsilon

	YY is the response

	X1X_{1} and X2X_{2} are the predictors

	β0\beta_{0} is the intercept, and β1\beta_{1}, β2\beta_{2} etc are coefficients that describe what 1-unit changes in X1X_{1} and X2X_{2} do to the outcome variable YY.

	ϵ\epsilon is random error. Our model will not perfectly predict YY. It will be off by some random amount. We assume this amount is a random draw from a Normal distribution with mean 0 and standard deviation σ\sigma.

Building a linear model means we propose a linear model and then estimate the coefficients and the variance of the error term. Above, this means estimating β0,β1,β2\beta_{0}, \beta_{1}, \beta_{2} and σ\sigma. This is what we do in R.

Let’s look at the relationship between height and weight.

fit <- lm(Weight~Height, data=nha)
summary(fit)

Call:
lm(formula = Weight ~ Height, data = nha)

Residuals:
 Min 1Q Median 3Q Max
-40.34 -13.11 -2.66 9.31 127.97

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -73.71 5.08 -14.5 <2e-16
Height 0.92 0.03 30.6 <2e-16

Residual standard error: 18.6 on 3674 degrees of freedom
 (31 observations deleted due to missingness)
Multiple R-squared: 0.203, Adjusted R-squared: 0.203
F-statistic: 938 on 1 and 3674 DF, p-value: <2e-16

The relationship is highly significant (P<2.2×10−162.2 \times 10^{-16}). The intercept term is not very useful most of the time. Here it shows us what the value of Weight would be when Height=0, which could never happen. The Height coefficient is meaningful – each one unit increase in height results in a 0.92 increase in the corresponding unit of weight. Let’s visualize that relationship:

ggplot(nha, aes(x=Height, y=Weight)) + geom_point() + geom_smooth(method="lm")

By default, this is only going to show the prediction over the range of the data. This is important! You never want to try to extrapolate response variables outside of the range of your predictor(s). For example, the linear model tells us that weight is -73.7kg when height is zero. We can extend the predicted model / regression line past the lowest value of the data down to height=0. The bands on the confidence interval tell us that the model is apparently confident within the regions defined by the gray boundary. But this is silly – we would never see a height of zero, and predicting past the range of the available training data is never a good idea.

ggplot(nha, aes(x=Height, y=Weight)) +
 geom_point() +
 geom_smooth(method="lm", fullrange=TRUE) +
 xlim(0, NA) +
 ggtitle("Friends don't let friends extrapolate.")

8.3.6 Multiple regression

Finally, let’s do a multiple linear regression analysis, where we attempt to model the effect of multiple predictor variables at once on some outcome. First, let’s look at the effect of physical activity on testosterone levels. Let’s do this with a t-test and linear regression, showing that you get the same results.

t.test(Testosterone~PhysActive, data=nha, var.equal=TRUE)

 Two Sample t-test

data: Testosterone by PhysActive
t = -2, df = 3436, p-value = 0.02
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
 -34.81 -3.72
sample estimates:
 mean in group No mean in group Yes
 208 227

summary(lm(Testosterone~PhysActive, data=nha))

Call:
lm(formula = Testosterone ~ PhysActive, data = nha)

Residuals:
 Min 1Q Median 3Q Max
 -224 -196 -116 167 1588

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 207.56 5.87 35.34 <2e-16
PhysActiveYes 19.27 7.93 2.43 0.015

Residual standard error: 231 on 3436 degrees of freedom
 (269 observations deleted due to missingness)
Multiple R-squared: 0.00172, Adjusted R-squared: 0.00142
F-statistic: 5.9 on 1 and 3436 DF, p-value: 0.0152

In both cases, the p-value is significant (p=0.01516), and the result suggest that increased physical activity is associated with increased testosterone levels. Does increasing your physical activity increase your testosterone levels? Or is it the other way – will increased testosterone encourage more physical activity? Or is it none of the above – is the apparent relationship between physical activity and testosterone levels only apparent because both are correlated with yet a third, unaccounted for variable? Let’s throw Age into the model as well.

summary(lm(Testosterone~PhysActive+Age, data=nha))

Call:
lm(formula = Testosterone ~ PhysActive + Age, data = nha)

Residuals:
 Min 1Q Median 3Q Max
 -239 -197 -112 167 1598

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 247.883 13.085 18.94 < 2e-16
PhysActiveYes 13.674 8.081 1.69 0.09073
Age -0.800 0.232 -3.45 0.00057

Residual standard error: 231 on 3435 degrees of freedom
 (269 observations deleted due to missingness)
Multiple R-squared: 0.00516, Adjusted R-squared: 0.00458
F-statistic: 8.9 on 2 and 3435 DF, p-value: 0.000139

This shows us that after accounting for age that the testosterone / physical activity link is no longer significant. Every 1-year increase in age results in a highly significant decrease in testosterone, and since increasing age is also likely associated with decreased physical activity, perhaps age is the confounder that makes this relationship apparent.

Adding other predictors can also swing things the other way. We know that men have much higher testosterone levels than females. Sex is probably the single best predictor of testosterone levels in our dataset. By not accounting for this effect, our unaccounted-for variation remains very high. By accounting for Gender, we now reduce the residual error in the model, and the physical activity effect once again becomes significant. Also notice that our model fits much better (higher R-squared), and is much more significant overall.

summary(lm(Testosterone ~ PhysActive+Age+Gender, data=nha))

Call:
lm(formula = Testosterone ~ PhysActive + Age + Gender, data = nha)

Residuals:
 Min 1Q Median 3Q Max
-397.9 -31.0 -4.4 20.5 1400.9

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 46.693 7.573 6.17 7.8e-10
PhysActiveYes 9.275 4.462 2.08 0.038
Age -0.590 0.128 -4.60 4.3e-06
Gendermale 385.199 4.351 88.53 < 2e-16

Residual standard error: 128 on 3434 degrees of freedom
 (269 observations deleted due to missingness)
Multiple R-squared: 0.697, Adjusted R-squared: 0.697
F-statistic: 2.63e+03 on 3 and 3434 DF, p-value: <2e-16

We’ve only looked at the summary() and anova() functions for extracting information from an lm class object. There are several other accessor functions that can be used on a linear model object. Check out the help page for each one of these to learn more.

	coefficients()

	predict.lm()

	fitted.values()

	residuals()

Exercise 5

Is the average BMI different in single people versus those in a committed relationship? Perform a t-test.

Exercise 6

The Work variable is coded “Looking” (n=159), “NotWorking” (n=1317), and “Working” (n=2230).

	Fit a linear model of Income against Work. Assign this to an object called fit. What does the fit object tell you when you display it directly?

	Run an anova() to get the ANOVA table. Is the model significant?

	Run a Tukey test to get the pairwise contrasts. (Hint: TukeyHSD() on aov() on the fit). What do you conclude?

	Instead of thinking of this as ANOVA, think of it as a linear model. After you’ve thought about it, get some summary() statistics on the fit. Do these results jive with the ANOVA model?

Exercise 7

Examine the relationship between HDL cholesterol levels (HDLChol) and whether someone has diabetes or not (Diabetes).

	Is there a difference in means between diabetics and nondiabetics? Perform a t-test without a Welch correction (that is, assuming equal variances – see ?t.test for help).

	Do the same analysis in a linear modeling framework.

	Does the relationship hold when adjusting for Weight?

	What about when adjusting for Weight, Age, Gender, PhysActive (whether someone participates in moderate or vigorous-intensity sports, fitness or recreational activities, coded as yes/no). What is the effect of each of these explanatory variables?

8.4 Discrete variables

Until now we’ve only discussed analyzing continuous outcomes / dependent variables. We’ve tested for differences in means between two groups with t-tests, differences among means between n groups with ANOVA, and more general relationships using linear regression. In all of these cases, the dependent variable, i.e., the outcome, or YY variable, was continuous, and usually normally distributed. What if our outcome variable is discrete, e.g., “Yes/No”, “Mutant/WT”, “Case/Control”, etc.? Here we use a different set of procedures for assessing significant associations.

8.4.1 Contingency tables

The xtabs() function is useful for creating contingency tables from categorical variables. Let’s create a gender by diabetes status contingency table, and assign it to an object called xt. After making the assignment, type the name of the object to view it.

xt <- xtabs(~Gender+Diabetes, data=nha)
xt

 Diabetes
Gender No Yes
 female 1692 164
 male 1653 198

There are two useful functions, addmargins() and prop.table() that add more information or manipulate how the data is displayed. By default, prop.table() will divide the number of observations in each cell by the total. But you may want to specify which margin you want to get proportions over. Let’s do this for the first (row) margin.

Add marginal totals
addmargins(xt)

 Diabetes
Gender No Yes Sum
 female 1692 164 1856
 male 1653 198 1851
 Sum 3345 362 3707

Get the proportional table
prop.table(xt)

 Diabetes
Gender No Yes
 female 0.4564 0.0442
 male 0.4459 0.0534

That wasn't really what we wanted.
Do this over the first (row) margin only.
prop.table(xt, margin=1)

 Diabetes
Gender No Yes
 female 0.9116 0.0884
 male 0.8930 0.1070

Looks like men have slightly higher rates of diabetes than women. But is this significant?

The chi-square test is used to assess the independence of these two factors. That is, if the null hypothesis that gender and diabetes are independent is true, the we would expect a proportionally equal number of diabetics across each sex. Males seem to be at slightly higher risk than females, but the difference is just short of statistically significant.

chisq.test(xt)

 Pearson's Chi-squared test with Yates' continuity correction

data: xt
X-squared = 3, df = 1, p-value = 0.06

An alternative to the chi-square test is Fisher’s exact test. Rather than relying on a critical value from a theoretical chi-square distribution, Fisher’s exact test calculates the exact probability of observing the contingency table as is. It’s especially useful when there are very small n’s in one or more of the contingency table cells. Both the chi-square and Fisher’s exact test give us p-values of approximately 0.06.

fisher.test(xt)

 Fisher's Exact Test for Count Data

data: xt
p-value = 0.06
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.988 1.547
sample estimates:
odds ratio
 1.24

There’s a useful plot for visualizing contingency table data called a mosaic plot. Call the mosaicplot() function on the contingency table object. Note this is a built-in plot, not a ggplot2-style plot.

mosaicplot(xt, main=NA)

Let’s create a different contingency table, this time looking at the relationship between race and whether the person had health insurance. Display the table with marginal totals.

xt <- xtabs(~Race+Insured, data=nha)
addmargins(xt)

 Insured
Race No Yes Sum
 Asian 46 169 215
 Black 86 330 416
 Hispanic 89 151 240
 Mexican 147 141 288
 Other 33 65 98
 White 307 2141 2448
 Sum 708 2997 3705

Let’s do the same thing as above, this time showing the proportion of people in each race category having health insurance.

prop.table(xt, margin=1)

 Insured
Race No Yes
 Asian 0.214 0.786
 Black 0.207 0.793
 Hispanic 0.371 0.629
 Mexican 0.510 0.490
 Other 0.337 0.663
 White 0.125 0.875

Now, let’s run a chi-square test for independence.

chisq.test(xt)

 Pearson's Chi-squared test

data: xt
X-squared = 323, df = 5, p-value <2e-16

The result is highly significant. In fact, so significant, that the display rounds off the p-value to something like <2.2×10−16<2.2 \times 10^{-16}. If you look at the help for ?chisq.test you’ll see that displaying the test only shows you summary information, but other components can be accessed. For example, we can easily get the actual p-value, or the expected counts under the null hypothesis of independence.

chisq.test(xt)$p.value

[1] 9.75e-68

chisq.test(xt)$expected

 Insured
Race No Yes
 Asian 41.1 173.9
 Black 79.5 336.5
 Hispanic 45.9 194.1
 Mexican 55.0 233.0
 Other 18.7 79.3
 White 467.8 1980.2

We can also make a mosaic plot similar to above:

mosaicplot(xt, main=NA)

8.4.2 Logistic regression

(See slides)

What if we wanted to model the discrete outcome, e.g., whether someone is insured, against several other variables, similar to how we did with multiple linear regression? We can’t use linear regression because the outcome isn’t continuous – it’s binary, either Yes or No. For this we’ll use logistic regression to model the log odds of binary response. That is, instead of modeling the outcome variable, YY, directly against the inputs, we’ll model the log odds of the outcome variable.

If pp is the probability that the individual is insured, then p1−p\frac{p}{1-p} is the odds that person is insured. Then it follows that the linear model is expressed as:

log(p1−p)=β0+β1x1+⋯+βkxklog(\frac{p}{1-p}) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k

Where β0\beta_0 is the intercept, β1\beta_1 is the increase in the odds of the outcome for every unit increase in x1x_1, and so on.

Logistic regression is a type of generalized linear model (GLM). We fit GLM models in R using the glm() function. It works like the lm() function except we specify which GLM to fit using the family argument. Logistic regression requires family=binomial.

The typical use looks like this:

mod <- glm(y ~ x, data=yourdata, family='binomial')
summary(mod)

Before we fit a logistic regression model let’s relevel the Race variable so that “White” is the baseline. We saw above that people who identify as “White” have the highest rates of being insured. When we run the logistic regression, we’ll get a separate coefficient (effect) for each level of the factor variable(s) in the model, telling you the increased odds that that level has, as compared to the baseline group.

#Look at Race. The default ordering is alphabetical
nha$Race

Let's relevel that where the group with the highest rate of insurance is "baseline"
relevel(nha$Race, ref="White")

If we're happy with that result, permanently change it
nha$Race <- relevel(nha$Race, ref="White")

Or do it the dplyr way
nha <- nha |>
 mutate(Race=relevel(Race, ref="White"))

Now, let’s fit a logistic regression model assessing how the odds of being insured change with different levels of race.

fit <- glm(Insured~Race, data=nha, family="binomial")
summary(fit)

Call:
glm(formula = Insured ~ Race, family = "binomial", data = nha)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.942 0.061 31.82 < 2e-16
RaceAsian -0.641 0.177 -3.62 3e-04
RaceBlack -0.597 0.136 -4.41 1.1e-05
RaceHispanic -1.413 0.147 -9.62 < 2e-16
RaceMexican -1.984 0.133 -14.95 < 2e-16
RaceOther -1.264 0.222 -5.69 1.3e-08

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 3614.6 on 3704 degrees of freedom
Residual deviance: 3336.6 on 3699 degrees of freedom
 (2 observations deleted due to missingness)
AIC: 3349

Number of Fisher Scoring iterations: 4

The Estimate column shows the log of the odds ratio – how the log odds of having health insurance changes at each level of race compared to White. The P-value for each coefficient is on the far right. This shows that every other race has significantly less rates of health insurance coverage. But, as in our multiple linear regression analysis above, are there other important variables that we’re leaving out that could alter our conclusions? Lets add a few more variables into the model to see if something else can explain the apparent Race-Insured association. Let’s add a few things likely to be involved (Age and Income), and something that’s probably irrelevant (hours slept at night).

fit <- glm(Insured ~ Age+Income+SleepHrsNight+Race, data=nha, family="binomial")
summary(fit)

Call:
glm(formula = Insured ~ Age + Income + SleepHrsNight + Race,
 family = "binomial", data = nha)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.50e-01 2.92e-01 -1.20 0.230
Age 3.37e-02 2.95e-03 11.43 < 2e-16
Income 1.53e-05 1.54e-06 9.98 < 2e-16
SleepHrsNight -1.76e-02 3.52e-02 -0.50 0.616
RaceAsian -4.55e-01 2.03e-01 -2.24 0.025
RaceBlack -2.39e-01 1.54e-01 -1.55 0.120
RaceHispanic -1.01e+00 1.64e-01 -6.18 6.6e-10
RaceMexican -1.40e+00 1.48e-01 -9.47 < 2e-16
RaceOther -9.89e-01 2.42e-01 -4.08 4.5e-05

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 3284.3 on 3395 degrees of freedom
Residual deviance: 2815.0 on 3387 degrees of freedom
 (311 observations deleted due to missingness)
AIC: 2833

Number of Fisher Scoring iterations: 5

A few things become apparent:

	Age and income are both highly associated with whether someone is insured. Both of these variables are highly significant (P<2.2×10−16P<2.2 \times 10^{-16}), and the coefficient (the Estimate column) is positive, meaning that for each unit increase in one of these variables, the odds of being insured increases by the corresponding amount.

	Hours slept per night is not meaningful at all.

	After accounting for age and income, several of the race-specific differences are no longer statistically significant, but others remain so.

	The absolute value of the test statistic (column called z value) can roughly be taken as an estimate of the “importance” of that variable to the overall model. So, age and income are the most important influences in this model; self-identifying as Hispanic or Mexican are also very highly important, hours slept per night isn’t important at all, and the other race categories fall somewhere in between.

There is much more to go into with logistic regression. This chapter only scratches the surface. Missing from this chapter are things like regression diagnostics, model comparison approaches, penalization, interpretation of model coefficients, fitting interaction effects, and much more. Alan Agresti’s Categorical Data Analysis has long been considered the definitive text on this topic. I also recommend Agresti’s Introduction to Categorical Data Analysis (a.k.a. “Agresti lite”) for a gentler introduction.

Exercise 8

What’s the relationship between diabetes and participating in rigorous physical activity or sports?

	Create a contingency table with Diabetes status in rows and physical activity status in columns.

	Display that table with margins.

	Show the proportions of diabetics and nondiabetics, separately, who are physically active or not.

	Is this relationship significant?

	Create a mosaic plot to visualize the relationship.

Exercise 9

Model the same association in a logistic regression framework to assess the risk of diabetes using physical activity as a predictor.

	Fit a model with just physical activity as a predictor, and display a model summary.

	Add gender to the model, and show a summary.

	Continue adding weight and age to the model. What happens to the gender association?

	Continue and add income to the model. What happens to the original association with physical activity?

8.5 Power & sample size

This is a necessarily short introduction to the concept of power and sample size calculations. Statistical power, also sometimes called sensitivity, is defined as the probability that your test correctly rejects the null hypothesis when the alternative hypothesis is true. That is, if there really is an effect (difference in means, association between categorical variables, etc.), how likely are you to be able to detect that effect at a given statistical significance level, given certain assumptions. Generally there are a few moving pieces, and if you know all but one of them, you can calculate what that last one is.

	Power: How likely are you to detect the effect? (Usually like to see 80% or greater).

	N: What is the sample size you have (or require)?

	Effect size: How big is the difference in means, odds ratio, etc?

If we know we want 80% power to detect a certain magnitude of difference between groups, we can calculate our required sample size. Or, if we know we can only collect 5 samples, we can calculate how likely we are to detect a particular effect. Or, we can work to solve the last one - if we want 80% power and we have 5 samples, what’s the smallest effect we can hope to detect?

All of these questions require certain assumptions about the data and the testing procedure. Which kind of test is being performed? What’s the true effect size (often unknown, or estimated from preliminary data), what’s the standard deviation of samples that will be collected (often unknown, or estimated from preliminary data), what’s the level of statistical significance needed (traditionally p<0.05, but must consider multiple testing corrections).

8.5.1 T-test power/N

The power.t.test() empirically estimates power or sample size of a t-test for differences in means. If we have 20 samples in each of two groups (e.g., control versus treatment), and the standard deviation for whatever we’re measuring is 2.3, and we’re expecting a true difference in means between the groups of 2, what’s the power to detect this effect?

power.t.test(n=20, delta=2, sd=2.3)

 Two-sample t test power calculation

 n = 20
 delta = 2
 sd = 2.3
 sig.level = 0.05
 power = 0.764
 alternative = two.sided

NOTE: n is number in *each* group

What’s the sample size we’d need to detect a difference of 0.8 given a standard deviation of 1.5, assuming we want 80% power?

power.t.test(power=.80, delta=.8, sd=1.5)

 Two-sample t test power calculation

 n = 56.2
 delta = 0.8
 sd = 1.5
 sig.level = 0.05
 power = 0.8
 alternative = two.sided

NOTE: n is number in *each* group

8.5.2 Proportions power/N

What about a two-sample proportion test (e.g., chi-square test)? If we have two groups (control and treatment), and we’re measuring some outcome (e.g., infected yes/no), and we know that the proportion of infected controls is 80% but 20% in treated, what’s the power to detect this effect in 5 samples per group?

power.prop.test(n=5, p1=0.8, p2=0.2)

 Two-sample comparison of proportions power calculation

 n = 5
 p1 = 0.8
 p2 = 0.2
 sig.level = 0.05
 power = 0.469
 alternative = two.sided

NOTE: n is number in *each* group

How many samples would we need for 90% power?

power.prop.test(power=0.9, p1=0.8, p2=0.2)

 Two-sample comparison of proportions power calculation

 n = 12.4
 p1 = 0.8
 p2 = 0.2
 sig.level = 0.05
 power = 0.9
 alternative = two.sided

NOTE: n is number in *each* group

Also check out the pwr package which has power calculation functions for other statistical tests.

	Function
	Power calculations for

	pwr.2p.test()
	Two proportions (equal n)

	pwr.2p2n.test()
	Two proportions (unequal n)

	pwr.anova.test()
	Balanced one way ANOVA

	pwr.chisq.test()
	Chi-square test

	pwr.f2.test()
	General linear model

	pwr.p.test()
	Proportion (one sample)

	pwr.r.test()
	Correlation

	pwr.t.test()
	T-tests (one sample, 2 sample, paired)

	pwr.t2n.test()
	T-test (two samples with unequal n)

Exercise 10

You’re doing a gene expression experiment. What’s your power to detect a 2-fold change in a gene with a standard deviation of 0.7, given 3 samples? (Note - fold change is usually given on the log2log_2 scale, so a 2-fold change would be a delta of 1. That is, if the fold change is 2x, then log2(2)=1log_2(2)=1, and you should use 1 in the calculation, not 2).

[1] 0.271

Exercise 11

How many samples would you need to have 80% power to detect this effect?

[1] 8.76

Exercise 12

You’re doing a population genome-wide association study (GWAS) looking at the effect of a SNP on disease X. Disease X has a baseline prevalence of 5% in the population, but you suspect the SNP might increase the risk of disease X by 10% (this is typical for SNP effects on common, complex diseases). Calculate the number of samples do you need to have 80% power to detect this effect, given that you want a genome-wide statistical significance of p<5×10−8p<5\times10^{-8} to account for multiple testing.1 (Hint, you can expressed 5×10−85\times10^{-8} in R using 5e-8 instead of .00000005).

[1] 157589

8.6 Tidying models

We spent a lot of time in previous chapters on tidy data, where each column is a variable and each row is an observation. Tidy data is easy to filter observations based on values in a column (e.g., we could get just adult males with filter(nha, Gender=="male" & Age>=18), and easy to select particular variables/features of interest by their column name.

Even when we start with tidy data, we don’t end up with tidy models. The output from tests like t.test or lm are not data.frames, and it’s difficult to get the information out of the model object that we want. The broom package bridges this gap.

Depending on the type of model object you’re using, broom provides three methods that do different kinds of tidying:

	tidy: constructs a data frame that summarizes the model’s statistical findings like coefficients and p-values.

	augment: add columns to the original data that was modeled, like predictions and residuals.

	glance: construct a concise one-row summary of the model with information like R2R^2 that are computed once for the entire model.

Let’s go back to our linear model example.

Try modeling Testosterone against Physical Activity, Age, and Gender.
fit <- lm(Testosterone~PhysActive+Age+Gender, data=nha)

See what that model looks like:
summary(fit)

Call:
lm(formula = Testosterone ~ PhysActive + Age + Gender, data = nha)

Residuals:
 Min 1Q Median 3Q Max
-397.9 -31.0 -4.4 20.5 1400.9

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 46.693 7.573 6.17 7.8e-10
PhysActiveYes 9.275 4.462 2.08 0.038
Age -0.590 0.128 -4.60 4.3e-06
Gendermale 385.199 4.351 88.53 < 2e-16

Residual standard error: 128 on 3434 degrees of freedom
 (269 observations deleted due to missingness)
Multiple R-squared: 0.697, Adjusted R-squared: 0.697
F-statistic: 2.63e+03 on 3 and 3434 DF, p-value: <2e-16

What if we wanted to pull out the coefficient for Age, or the P-value for PhysActive? It gets pretty gross. We first have to coef(summary(lmfit)) to get a matrix of coefficients, the terms are still stored in row names, and the column names are inconsistent with other packages (e.g. Pr(>|t|) compared to p.value). Yuck!

coef(summary(fit))["Age", "Estimate"]

[1] -0.59

coef(summary(fit))["PhysActiveYes", "Pr(>|t|)"]

[1] 0.0377

Instead, you can use the tidy function, from the broom package, on the fit:

Install the package if you don't have it
install.packages("broom")

library(broom)
tidy(fit)

A tibble: 4 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 46.7 7.57 6.17 7.83e-10
2 PhysActiveYes 9.27 4.46 2.08 3.77e- 2
3 Age -0.590 0.128 -4.60 4.28e- 6
4 Gendermale 385. 4.35 88.5 0

This gives you a data.frame with all your model results. The row names have been moved into a column called term, and the column names are simple and consistent (and can be accessed using $). These can be manipulated with dplyr just like any other data frame.

tidy(fit) |>
 filter(term!="(Intercept)") |>
 select(term, p.value) |>
 arrange(p.value)

A tibble: 3 × 2
 term p.value
 <chr> <dbl>
1 Gendermale 0
2 Age 0.00000428
3 PhysActiveYes 0.0377

Instead of viewing the coefficients, you might be interested in the fitted values and residuals for each of the original points in the regression. For this, use augment, which augments the original data with information from the model. New columns begins with a . (to avoid overwriting any of the original columns).

Augment the original data
IF you get a warning about deprecated... purrr..., ignore. It's a bug that'll be fixed soon.
augment(fit) |> head()

A tibble: 6 × 11
 .rownames Testosterone PhysActive Age Gender .fitted .resid .hat .sigma
 <chr> <dbl> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
1 1 47.5 No 43 female 21.3 26.2 0.000989 128.
2 2 643. No 80 male 385. 258. 0.00185 127.
3 3 643. No 80 male 385. 258. 0.00185 127.
4 4 21.1 Yes 34 female 35.9 -14.8 0.000928 128.
5 5 563. No 80 male 385. 178. 0.00185 128.
6 6 402. No 35 male 411. -9.45 0.00117 128.
ℹ 2 more variables: .cooksd <dbl>, .std.resid <dbl>

Plot residuals vs fitted values for males,
colored by Physical Activity, size scaled by age
augment(fit) |>
 filter(Gender=="male") |>
 ggplot(aes(.fitted, .resid, col=PhysActive, size=Age)) + geom_point()

Finally, several summary statistics are computed for the entire regression, such as R2R^2 and the F-statistic. These can be accessed with glance:

glance(fit)

A tibble: 1 × 12
 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.697 0.697 128. 2632. 0 3 -21545. 43100. 43130.
ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

The broom functions work on a pipe, so you can |> your model directly to any of the functions like tidy(). Let’s tidy up our t-test:

t.test(AlcoholYear~RelationshipStatus, data=nha)

 Welch Two Sample t-test

data: AlcoholYear by RelationshipStatus
t = 5.4315, df = 2674.8, p-value = 6.09e-08
alternative hypothesis: true difference in means between group Committed and group Single is not equal to 0
95 percent confidence interval:
 13.05949 27.81603
sample estimates:
mean in group Committed mean in group Single
 83.93416 63.49640

t.test(AlcoholYear~RelationshipStatus, data=nha) |> tidy()

A tibble: 1 × 10
 estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 20.4 83.9 63.5 5.43 6.09e-8 2675. 13.1 27.8
ℹ 2 more variables: method <chr>, alternative <chr>

…and our Mann-Whitney U test / Wilcoxon rank-sum test:

wilcox.test(AlcoholYear~RelationshipStatus, data=nha)

 Wilcoxon rank sum test with continuity correction

data: AlcoholYear by RelationshipStatus
W = 1067954, p-value = 0.0001659
alternative hypothesis: true location shift is not equal to 0

wilcox.test(AlcoholYear~RelationshipStatus, data=nha) |> tidy()

A tibble: 1 × 4
 statistic p.value method alternative
 <dbl> <dbl> <chr> <chr>
1 1067954. 0.000166 Wilcoxon rank sum test with continuity correct… two.sided

…and our Fisher’s exact test on the cross-tabulated data:

xtabs(~Gender+Diabetes, data=nha) |> fisher.test()

 Fisher's Exact Test for Count Data

data: xtabs(~Gender + Diabetes, data = nha)
p-value = 0.05992
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.9883143 1.5466373
sample estimates:
odds ratio
 1.235728

xtabs(~Gender+Diabetes, data=nha) |> fisher.test() |> tidy()

A tibble: 1 × 6
 estimate p.value conf.low conf.high method alternative
 <dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 1.24 0.0599 0.988 1.55 Fisher's Exact Test for Count… two.sided

…and finally, a logistic regression model:

fit the model and summarize it the usual way
glmfit <- glm(Insured~Race, data=nha, family=binomial)
summary(glmfit)

Call:
glm(formula = Insured ~ Race, family = binomial, data = nha)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.94218 0.06103 31.825 < 2e-16
RaceAsian -0.64092 0.17715 -3.618 0.000297
RaceBlack -0.59744 0.13558 -4.406 1.05e-05
RaceHispanic -1.41354 0.14691 -9.622 < 2e-16
RaceMexican -1.98385 0.13274 -14.946 < 2e-16
RaceOther -1.26430 0.22229 -5.688 1.29e-08

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 3614.6 on 3704 degrees of freedom
Residual deviance: 3336.6 on 3699 degrees of freedom
 (2 observations deleted due to missingness)
AIC: 3348.6

Number of Fisher Scoring iterations: 4

tidy it up!
tidy(glmfit)

A tibble: 6 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1.94 0.0610 31.8 2.96e-222
2 RaceAsian -0.641 0.177 -3.62 2.97e- 4
3 RaceBlack -0.597 0.136 -4.41 1.05e- 5
4 RaceHispanic -1.41 0.147 -9.62 6.47e- 22
5 RaceMexican -1.98 0.133 -14.9 1.66e- 50
6 RaceOther -1.26 0.222 -5.69 1.29e- 8

do whatever you want now
tidy(glmfit) |>
 filter(term!="(Intercept)") |>
 mutate(logp=-1*log10(p.value)) |>
 ggplot(aes(term, logp)) + geom_bar(stat="identity") + coord_flip()

Check out some of the other broom vignettes on CRAN, and also check out the biobroom package on bioconductor for turning bioconductor objects and analytical results into tidy data frames.

8.7 Additional topics & recommended reading

8.7.1 1. Batch effects

Batch effects are sources of technical variation introduced during an experiment, such as processing with different reagents, handling by a different technician, sequencing on a different flow cell, or processing samples in groups on different days. If these batch effects are strongly confounded with the study variable of interest, they can call into question the validity of your results, and in some cases, render collected data completely useless. The papers below discuss batch effects and how they can be mitigated.

	Chapter 5 of Scherer, Andreas. Batch effects and noise in microarray experiments: sources and solutions. Vol. 868. John Wiley & Sons, 2009.

	Chapter 5 only: http://onlinelibrary.wiley.com/doi/10.1002/9780470685983.ch5/pdf.

	Entire book: https://faculty.mu.edu.sa/public/uploads/1382673974.78419780470741382.pdf.

	Leek, Jeffrey T., et al. “Tackling the widespread and critical impact of batch effects in high-throughput data.” Nature Reviews Genetics 11.10 (2010): 733-739. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880143/.

8.7.2 2. What’s my n?

“What’s my n” isn’t always a straightforward question to answer, especially when it comes to cell culture expriments. The post and article below go into some of these details.

	Statistics for Experimental Biologists: “What is ‘n’ in cell culture experiments?” Available at http://labstats.net/articles/cell_culture_n.html.

	Vaux, David L., Fiona Fidler, and Geoff Cumming. “Replicates and repeats—what is the difference and is it significant?.” EMBO reports 13.4 (2012): 291-296. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321166/.

8.7.3 3. Technical versus biological replicates

Technical replicates involve taking multiple measurements on the same sample. Biological replicates are different samples each with separate measurements/assays. While technical replicates can help calibrate the precision of an instrument or assay, biological replicates are necessary for statistical analysis to make inferences about a condition or treatment. Read the paper and note below for more information on technical vs biological replication.

	Blainey, Paul, Martin Krzywinski, and Naomi Altman. “Points of significance: replication.” Nature methods 11.9 (2014): 879-880. Available at http://rdcu.be/yguA.

	Illumina Technical Note: “The Power of Replicates.” Available at https://www.illumina.com/Documents/products/technotes/technote_power_replicates.pdf.

	https://www.quora.com/Why-is-P-value-5x10-8-chosen-as-a-threshold-to-reach-genome-wide-significance↩︎

9 Survival Analysis

This chapter will provide hands-on instruction and exercises covering survival analysis using R. Some of the data to be used here will come from The Cancer Genome Atlas (TCGA), where we may also cover programmatic access to TCGA through Bioconductor if time allows.

Handouts: Download and print out these handouts and bring them to class:

	Cheat sheet

	Background handout

	Exercises handout

9.1 Background

In the chapter on essential statistics (Chapter 8) we covered basic categorical data analysis – comparing proportions (risks, rates, etc) between different groups using a chi-square or fisher exact test, or logistic regression. For example, we looked at how the diabetes rate differed between males and females. In this kind of analysis you implicitly assume that the rates are constant over the period of the study, or as defined by the different groups you defined.

But, in longitudinal studies where you track samples or subjects from one time point (e.g., entry into a study, diagnosis, start of a treatment) until you observe some outcome event (e.g., death, onset of disease, relapse), it doesn’t make sense to assume the rates are constant. For example: the risk of death after heart surgery is highest immediately post-op, decreases as the patient recovers, then rises slowly again as the patient ages. Or, recurrence rate of different cancers varies highly over time, and depends on tumor genetics, treatment, and other environmental factors.

9.1.1 Definitions

Survival analysis lets you analyze the rates of occurrence of events over time, without assuming the rates are constant. Generally, survival analysis lets you model the time until an event occurs,1 or compare the time-to-event between different groups, or how time-to-event correlates with quantitative variables.

The hazard is the instantaneous event (death) rate at a particular time point t. Survival analysis doesn’t assume the hazard is constant over time. The cumulative hazard is the total hazard experienced up to time t.

The survival function, is the probability an individual survives (or, the probability that the event of interest does not occur) up to and including time t. It’s the probability that the event (e.g., death) hasn’t occured yet. It looks like this, where TT is the time of death, and Pr(T>t)Pr(T>t) is the probability that the time of death is greater than some time tt. SS is a probability, so 0≤S(t)≤10 \leq S(t) \leq 1, since survival times are always positive (T≥0T \geq 0).

S(t)=Pr(T>t) S(t) = Pr(T>t)

The Kaplan-Meier curve illustrates the survival function. It’s a step function illustrating the cumulative survival probability over time. The curve is horizontal over periods where no event occurs, then drops vertically corresponding to a change in the survival function at each time an event occurs.

Censoring is a type of missing data problem unique to survival analysis. This happens when you track the sample/subject through the end of the study and the event never occurs. This could also happen due to the sample/subject dropping out of the study for reasons other than death, or some other loss to followup. The sample is censored in that you only know that the individual survived up to the loss to followup, but you don’t know anything about survival after that.2

Proportional hazards assumption: The main goal of survival analysis is to compare the survival functions in different groups, e.g., leukemia patients as compared to cancer-free controls. If you followed both groups until everyone died, both survival curves would end at 0%, but one group might have survived on average a lot longer than the other group. Survival analysis does this by comparing the hazard at different times over the observation period. Survival analysis doesn’t assume that the hazard is constant, but does assume that the ratio of hazards between groups is constant over time.3 This class does not cover methods to deal with non-proportional hazards, or interactions of covariates with the time to event.

Proportional hazards regression a.k.a. Cox regression is the most common approach to assess the effect of different variables on survival.

9.1.2 Cox PH Model

Kaplan-Meier curves are good for visualizing differences in survival between two categorical groups,4 but they don’t work well for assessing the effect of quantitative variables like age, gene expression, leukocyte count, etc. Cox PH regression can assess the effect of both categorical and continuous variables, and can model the effect of multiple variables at once.5

Cox PH regression models the natural log of the hazard at time t, denoted h(t)h(t), as a function of the baseline hazard (h0(t)h_0(t)) (the hazard for an individual where all exposure variables are 0) and multiple exposure variables x1x_1, x1x_1,, xpx_p. The form of the Cox PH model is:

log(h(t))=log(h0(t))+β1x1+β2x2+...+βpxp log(h(t)) = log(h_0(t)) + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p

If you exponentiate both sides of the equation, and limit the right hand side to just a single categorical exposure variable (x1x_1) with two groups (x1=1x_1=1 for exposed and x1=0x_1=0 for unexposed), the equation becomes:

h1(t)=h0(t)×eβ1x1 h_1(t) = h_0(t) \times e^{\beta_1 x_1}

Rearranging that equation lets you estimate the hazard ratio, comparing the exposed to the unexposed individuals at time t:

HR(t)=h1(t)h0(t)=eβ1 HR(t) = \frac{h_1(t)}{h_0(t)} = e^{\beta_1}

This model shows that the hazard ratio is eβ1e^{\beta_1}, and remains constant over time t (hence the name proportional hazards regression). The β\beta values are the regression coefficients that are estimated from the model, and represent the log(HazardRatio)log(Hazard\, Ratio) for each unit increase in the corresponding predictor variable. The interpretation of the hazards ratio depends on the measurement scale of the predictor variable, but in simple terms, a positive coefficient indicates worse survival and a negative coefficient indicates better survival for the variable in question.

9.2 Survival analysis in R

The core survival analysis functions are in the survival package. The survival package is one of the few “core” packages that comes bundled with your basic R installation, so you probably didn’t need to install.packages() it. But, you’ll need to load it like any other library when you want to use it. We’ll also be using the dplyr package, so let’s load that too. Finally, we’ll also want to load the survminer package, which provides much nicer Kaplan-Meier plots out-of-the-box than what you get out of base graphics.

library(dplyr)
library(survival)
library(survminer)

The core functions we’ll use out of the survival package include:

	Surv(): Creates a survival object.

	survfit(): Fits a survival curve using either a formula, of from a previously fitted Cox model.

	coxph(): Fits a Cox proportional hazards regression model.

Other optional functions you might use include:

	cox.zph(): Tests the proportional hazards assumption of a Cox regression model.

	survdiff(): Tests for differences in survival between two groups using a log-rank / Mantel-Haenszel test.6

Surv() creates the response variable, and typical usage takes the time to event,7 and whether or not the event occured (i.e., death vs censored). survfit() creates a survival curve that you could then display or plot. coxph() implements the regression analysis, and models specified the same way as in regular linear models, but using the coxph() function.

9.2.1 Getting started

We’re going to be using the built-in lung cancer dataset8 that ships with the survival package. You can get some more information about the dataset by running ?lung. The help tells us there are 10 variables in this data:

library(survival)
?lung

	inst: Institution code

	time: Survival time in days

	status: censoring status 1=censored, 2=dead

	age: Age in years

	sex: Male=1 Female=2

	ph.ecog: ECOG performance score (0=good 5=dead)

	ph.karno: Karnofsky performance score as rated by physician

	pat.karno: Karnofsky performance score as rated by patient

	meal.cal: Calories consumed at meals

	wt.loss: Weight loss in last six months

You can access the data just by running lung, as if you had read in a dataset and called it lung. You can operate on it just like any other data frame.

head(lung)
class(lung)
dim(lung)
View(lung)

Notice that lung is a plain data.frame object. You could see what it looks like as a tibble (prints nicely, tells you the type of variable each column is). You could then reassign lung to the as_tibble()-ified version.

as_tibble(lung)
lung <- as_tibble(lung)
lung

9.2.2 Survival Curves

Check out the help for ?Surv. This is the main function we’ll use to create the survival object. You can play fast and loose with how you specify the arguments to Surv. The help tells you that when there are two unnamed arguments, they will match time and event in that order. This is the common shorthand you’ll often see for right-censored data. The alternative lets you specify interval data, where you give it the start and end times (time and time2). If you keep reading you’ll see how Surv tries to guess how you’re coding the status variable. It will try to guess whether you’re using 0/1 or 1/2 to represent censored vs “dead”, respectively.9

Try creating a survival object called s, then display it. If you go back and head(lung) the data, you can see how these are related. It’s a special type of vector that tells you both how long the subject was tracked for, and whether or not the event occured or the sample was censored (shown by the +).

s <- Surv(lung$time, lung$status)
class(s)

[1] "Surv"

s

 [1] 306 455 1010+ 210 883 1022+ 310 361 218 166 170 654
 [13] 728 71 567 144 613 707 61 88 301 81 624 371
 [25] 394 520 574 118 390 12 473 26 533 107 53 122
 [37] 814 965+ 93 731 460 153 433 145 583 95 303 519
 [49] 643 765 735 189 53 246 689 65 5 132 687 345
 [61] 444 223 175 60 163 65 208 821+ 428 230 840+ 305
 [73] 11 132 226 426 705 363 11 176 791 95 196+ 167
 [85] 806+ 284 641 147 740+ 163 655 239 88 245 588+ 30
 [97] 179 310 477 166 559+ 450 364 107 177 156 529+ 11
[109] 429 351 15 181 283 201 524 13 212 524 288 363
[121] 442 199 550 54 558 207 92 60 551+ 543+ 293 202
[133] 353 511+ 267 511+ 371 387 457 337 201 404+ 222 62
[145] 458+ 356+ 353 163 31 340 229 444+ 315+ 182 156 329
[157] 364+ 291 179 376+ 384+ 268 292+ 142 413+ 266+ 194 320
[169] 181 285 301+ 348 197 382+ 303+ 296+ 180 186 145 269+
[181] 300+ 284+ 350 272+ 292+ 332+ 285 259+ 110 286 270 81
[193] 131 225+ 269 225+ 243+ 279+ 276+ 135
 [reached getOption("max.print") -- omitted 28 entries]

head(lung)

A tibble: 6 × 10
 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0

Now, let’s fit a survival curve with the survfit() function. See the help for ?survfit. Here we’ll create a simple survival curve that doesn’t consider any different groupings, so we’ll specify just an intercept (e.g., ~1) in the formula that survfit expects. We can do what we just did by “modeling” the survival object s we just created against an intercept only, but from here out, we’ll just do this in one step by nesting the Surv() call within the survfit() call, and similar to how we specify data for linear models with lm(), we’ll use the data= argument to specify which data we’re using. Similarly, we can assign that to another object called sfit (or whatever we wanted to call it).

survfit(s~1)

Call: survfit(formula = s ~ 1)

 n events median 0.95LCL 0.95UCL
[1,] 228 165 310 285 363

survfit(Surv(time, status)~1, data=lung)

Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

 n events median 0.95LCL 0.95UCL
[1,] 228 165 310 285 363

sfit <- survfit(Surv(time, status)~1, data=lung)
sfit

Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

 n events median 0.95LCL 0.95UCL
[1,] 228 165 310 285 363

Now, that object itself isn’t very interesting. It’s more interesting to run summary on what it creates. This will show a life table.

summary(sfit)

Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 5 228 1 0.9956 0.00438 0.9871 1.000
 11 227 3 0.9825 0.00869 0.9656 1.000
 12 224 1 0.9781 0.00970 0.9592 0.997
 13 223 2 0.9693 0.01142 0.9472 0.992
 15 221 1 0.9649 0.01219 0.9413 0.989
 26 220 1 0.9605 0.01290 0.9356 0.986
 30 219 1 0.9561 0.01356 0.9299 0.983
 31 218 1 0.9518 0.01419 0.9243 0.980
 53 217 2 0.9430 0.01536 0.9134 0.974
 54 215 1 0.9386 0.01590 0.9079 0.970
 59 214 1 0.9342 0.01642 0.9026 0.967
 60 213 2 0.9254 0.01740 0.8920 0.960
 61 211 1 0.9211 0.01786 0.8867 0.957
 62 210 1 0.9167 0.01830 0.8815 0.953
 65 209 2 0.9079 0.01915 0.8711 0.946
 71 207 1 0.9035 0.01955 0.8660 0.943
 79 206 1 0.8991 0.01995 0.8609 0.939
 81 205 2 0.8904 0.02069 0.8507 0.932
 88 203 2 0.8816 0.02140 0.8406 0.925
 92 201 1 0.8772 0.02174 0.8356 0.921
 93 199 1 0.8728 0.02207 0.8306 0.917
 95 198 2 0.8640 0.02271 0.8206 0.910
 105 196 1 0.8596 0.02302 0.8156 0.906
 107 194 2 0.8507 0.02362 0.8056 0.898
 110 192 1 0.8463 0.02391 0.8007 0.894
 116 191 1 0.8418 0.02419 0.7957 0.891
 118 190 1 0.8374 0.02446 0.7908 0.887
 122 189 1 0.8330 0.02473 0.7859 0.883
 [reached getOption("max.print") -- omitted 111 rows]

These tables show a row for each time point where either the event occured or a sample was censored. It shows the number at risk (number still remaining), and the cumulative survival at that instant.

What’s more interesting though is if we model something besides just an intercept. Let’s fit survival curves separately by sex.

sfit <- survfit(Surv(time, status)~sex, data=lung)
sfit

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)

 n events median 0.95LCL 0.95UCL
sex=1 138 112 270 212 310
sex=2 90 53 426 348 550

summary(sfit)

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)

 sex=1
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 11 138 3 0.9783 0.0124 0.9542 1.000
 12 135 1 0.9710 0.0143 0.9434 0.999
 13 134 2 0.9565 0.0174 0.9231 0.991
 15 132 1 0.9493 0.0187 0.9134 0.987
 26 131 1 0.9420 0.0199 0.9038 0.982
 30 130 1 0.9348 0.0210 0.8945 0.977
 31 129 1 0.9275 0.0221 0.8853 0.972
 53 128 2 0.9130 0.0240 0.8672 0.961
 54 126 1 0.9058 0.0249 0.8583 0.956
 59 125 1 0.8986 0.0257 0.8496 0.950
 60 124 1 0.8913 0.0265 0.8409 0.945
 65 123 2 0.8768 0.0280 0.8237 0.933
 71 121 1 0.8696 0.0287 0.8152 0.928
 81 120 1 0.8623 0.0293 0.8067 0.922
 88 119 2 0.8478 0.0306 0.7900 0.910
 92 117 1 0.8406 0.0312 0.7817 0.904
 93 116 1 0.8333 0.0317 0.7734 0.898
 95 115 1 0.8261 0.0323 0.7652 0.892
 105 114 1 0.8188 0.0328 0.7570 0.886
 107 113 1 0.8116 0.0333 0.7489 0.880
 110 112 1 0.8043 0.0338 0.7408 0.873
 116 111 1 0.7971 0.0342 0.7328 0.867
 118 110 1 0.7899 0.0347 0.7247 0.861
 131 109 1 0.7826 0.0351 0.7167 0.855
 132 108 2 0.7681 0.0359 0.7008 0.842
 135 106 1 0.7609 0.0363 0.6929 0.835
 142 105 1 0.7536 0.0367 0.6851 0.829
 144 104 1 0.7464 0.0370 0.6772 0.823
 [reached getOption("max.print") -- omitted 71 rows]

 sex=2
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 5 90 1 0.9889 0.0110 0.9675 1.000
 60 89 1 0.9778 0.0155 0.9478 1.000
 61 88 1 0.9667 0.0189 0.9303 1.000
 62 87 1 0.9556 0.0217 0.9139 0.999
 79 86 1 0.9444 0.0241 0.8983 0.993
 81 85 1 0.9333 0.0263 0.8832 0.986
 95 83 1 0.9221 0.0283 0.8683 0.979
 107 81 1 0.9107 0.0301 0.8535 0.972
 122 80 1 0.8993 0.0318 0.8390 0.964
 145 79 2 0.8766 0.0349 0.8108 0.948
 153 77 1 0.8652 0.0362 0.7970 0.939
 166 76 1 0.8538 0.0375 0.7834 0.931
 167 75 1 0.8424 0.0387 0.7699 0.922
 182 71 1 0.8305 0.0399 0.7559 0.913
 186 70 1 0.8187 0.0411 0.7420 0.903
 194 68 1 0.8066 0.0422 0.7280 0.894
 199 67 1 0.7946 0.0432 0.7142 0.884
 201 66 2 0.7705 0.0452 0.6869 0.864
 208 62 1 0.7581 0.0461 0.6729 0.854
 226 59 1 0.7452 0.0471 0.6584 0.843
 239 57 1 0.7322 0.0480 0.6438 0.833
 245 54 1 0.7186 0.0490 0.6287 0.821
 268 51 1 0.7045 0.0501 0.6129 0.810
 285 47 1 0.6895 0.0512 0.5962 0.798
 293 45 1 0.6742 0.0523 0.5791 0.785
 305 43 1 0.6585 0.0534 0.5618 0.772
 310 42 1 0.6428 0.0544 0.5447 0.759
 340 39 1 0.6264 0.0554 0.5267 0.745
 [reached getOption("max.print") -- omitted 23 rows]

Now, check out the help for ?summary.survfit. You can give the summary() function an option for what times you want to show in the results. Look at the range of followup times in the lung dataset with range(). You can create a sequence of numbers going from one number to another number by increments of yet another number with the seq() function.

?summary.survfit
range(lung$time)

[1] 5 1022

seq(0, 1100, 100)

 [1] 0 100 200 300 400 500 600 700 800 900 1000 1100

And we can use that sequence vector with a summary call on sfit to get life tables at those intervals separately for both males (1) and females (2). From these tables we can start to see that males tend to have worse survival than females.

summary(sfit, times=seq(0, 1000, 100))

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)

 sex=1
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 138 0 1.0000 0.0000 1.0000 1.000
 100 114 24 0.8261 0.0323 0.7652 0.892
 200 78 30 0.6073 0.0417 0.5309 0.695
 300 49 20 0.4411 0.0439 0.3629 0.536
 400 31 15 0.2977 0.0425 0.2250 0.394
 500 20 7 0.2232 0.0402 0.1569 0.318
 600 13 7 0.1451 0.0353 0.0900 0.234
 700 8 5 0.0893 0.0293 0.0470 0.170
 800 6 2 0.0670 0.0259 0.0314 0.143
 900 2 2 0.0357 0.0216 0.0109 0.117
 1000 2 0 0.0357 0.0216 0.0109 0.117

 sex=2
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 90 0 1.0000 0.0000 1.0000 1.000
 100 82 7 0.9221 0.0283 0.8683 0.979
 200 66 11 0.7946 0.0432 0.7142 0.884
 300 43 9 0.6742 0.0523 0.5791 0.785
 400 26 10 0.5089 0.0603 0.4035 0.642
 500 21 5 0.4110 0.0626 0.3050 0.554
 600 11 3 0.3433 0.0634 0.2390 0.493
 700 8 3 0.2496 0.0652 0.1496 0.417
 800 2 5 0.0832 0.0499 0.0257 0.270
 900 1 0 0.0832 0.0499 0.0257 0.270

9.2.3 Kaplan-Meier Plots

Now that we’ve fit a survival curve to the data it’s pretty easy to visualize it with a Kaplan-Meier plot. Create the survival object if you don’t have it yet, and instead of using summary(), use plot() instead.

sfit <- survfit(Surv(time, status)~sex, data=lung)
plot(sfit)

There are lots of ways to modify the plot produced by base R’s plot() function. You can see more options with the help for ?plot.survfit. We’re not going to go into any more detail here, because there’s another package called survminer that provides a function called ggsurvplot() that makes it much easier to produce publication-ready survival plots, and if you’re familiar with ggplot2 syntax it’s pretty easy to modify. So, let’s load the package and try it out.

library(survminer)
ggsurvplot(sfit)

This plot is substantially more informative by default, just because it automatically color codes the different groups, adds axis labels, and creates and automatic legend. But there’s a lot more you can do pretty easily here. Let’s add confidence intervals, show the p-value for the log-rank test, show a risk table below the plot, and change the colors and the group labels.

ggsurvplot(sfit, conf.int=TRUE, pval=TRUE, risk.table=TRUE,
 legend.labs=c("Male", "Female"), legend.title="Sex",
 palette=c("dodgerblue2", "orchid2"),
 title="Kaplan-Meier Curve for Lung Cancer Survival",
 risk.table.height=.15)

Exercise 1

Take a look at the built in colon dataset. If you type ?colon it’ll ask you if you wanted help on the colon dataset from the survival package, or the colon operator. Click “Chemotherapy for Stage B/C colon cancer”, or be specific with ?survival::colon. This dataset has survival and recurrence information on 929 people from a clinical trial on colon cancer chemotherapy. There are two rows per person, indidicated by the event type (etype) variable – etype==1 indicates that row corresponds to recurrence; etype==2 indicates death.

First, let’s turn the colon data into a tibble, then filter the data to only include the survival data, not the recurrence data. Let’s call this new object colondeath. The filter() function is in the dplyr library, which you can get by running library(dplyr). If you don’t have dplyr you can use the base subset() function instead.

library(dplyr)
colon <- as_tibble(colon)
colondeath <- filter(colon, etype==2)

Or, using base subset()
colondeath <- subset(colon, etype==2)

head(colondeath)

A tibble: 6 × 16
 id study rx sex age obstruct perfor adhere nodes status differ
 <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 Lev+5FU 1 43 0 0 0 5 1 2
2 2 1 Lev+5FU 1 63 0 0 0 1 0 2
3 3 1 Obs 0 71 0 0 1 7 1 2
4 4 1 Lev+5FU 0 66 1 0 0 6 1 2
5 5 1 Obs 1 69 0 0 0 22 1 2
6 6 1 Lev+5FU 0 57 0 0 0 9 1 2
ℹ 5 more variables: extent <dbl>, surg <dbl>, node4 <dbl>, time <dbl>,
etype <dbl>

Exercise 2

Look at the help for ?colon again. How are sex and status coded? How is this different from the lung data?

Exercise 3

Using survfit(Surv(..., ...,)~..., data=colondeath), create a survival curve separately for males versus females. Call the resulting object sfit. Run a summary() on this object, showing time points 0, 500, 1000, 1500, and 2000. Do males or females appear to fair better over this time period?

 sex=0
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 445 0 1.000 0.0000 1.000 1.000
 500 381 64 0.856 0.0166 0.824 0.889
 1000 306 75 0.688 0.0220 0.646 0.732
 1500 265 40 0.598 0.0232 0.554 0.645
 2000 218 22 0.547 0.0236 0.503 0.596

 sex=1
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 484 0 1.000 0.0000 1.000 1.000
 500 418 65 0.866 0.0155 0.836 0.897
 1000 335 83 0.694 0.0210 0.654 0.736
 1500 287 46 0.598 0.0223 0.556 0.644
 2000 238 25 0.545 0.0227 0.503 0.592

Exercise 4

Using the survminer package, plot a Kaplan-Meier curve for this analysis with confidence intervals and showing the p-value. See ?ggsurvplot for help. Is there a significant difference between males and females?

Exercise 5

Create Kaplan-Meier plot stratifying by:

	The extent of differentiation (well, moderate, poor), showing the p-value.

	Whether or not there was detectable cancer in >=4 lymph nodes, showing the p-value and confidence bands.

9.2.4 Cox Regression

Kaplan-Meier curves are good for visualizing differences in survival between two categorical groups, and the log-rank test you get when you ask for pval=TRUE is useful for asking if there are differences in survival between different groups. But this doesn’t generalize well for assessing the effect of quantitative variables. Just try creating a K-M plot for the nodes variable, which has values that range from 0-33. What a mess! Don’t do this.

ggsurvplot(survfit(Surv(time, status)~nodes, data=colondeath))

At some point using a categorical grouping for K-M plots breaks down, and further, you might want to assess how multiple variables work together to influence survival. For example, you might want to simultaneously examine the effect of race and socioeconomic status, so as to adjust for factors like income, access to care, etc., before concluding that ethnicity influences some outcome.

Cox PH regression can assess the effect of both categorical and continuous variables, and can model the effect of multiple variables at once. The coxph() function uses the same syntax as lm(), glm(), etc. The response variable you create with Surv() goes on the left hand side of the formula, specified with a ~. Explanatory variables go on the right side.

Let’s go back to the lung cancer data and run a Cox regression on sex.

fit <- coxph(Surv(time, status)~sex, data=lung)
fit

Call:
coxph(formula = Surv(time, status) ~ sex, data = lung)

 coef exp(coef) se(coef) z p
sex -0.5 0.6 0.2 -3 0.001

Likelihood ratio test=11 on 1 df, p=0.001
n= 228, number of events= 165

The exp(coef) column contains eβ1e^{\beta_1} (see background section above for more info). This is the hazard ratio – the multiplicative effect of that variable on the hazard rate (for each unit increase in that variable). So, for a categorical variable like sex, going from male (baseline) to female results in approximately ~40% reduction in hazard. You could also flip the sign on the coef column, and take exp(0.531), which you can interpret as being male resulting in a 1.7-fold increase in hazard, or that males die ad approximately 1.7x the rate per unit time as females (females die at 0.588x the rate per unit time as males).

Just remember:

	HR=1: No effect

	HR>1: Increase in hazard

	HR<1: Reduction in hazard (protective)

You’ll also notice there’s a p-value on the sex term, and a p-value on the overall model. That 0.00111 p-value is really close to the p=0.00131 p-value we saw on the Kaplan-Meier plot. That’s because the KM plot is showing the log-rank test p-value. You can get this out of the Cox model with a call to summary(fit). You can directly calculate the log-rank test p-value using survdiff().

summary(fit)

Call:
coxph(formula = Surv(time, status) ~ sex, data = lung)

 n= 228, number of events= 165

 coef exp(coef) se(coef) z Pr(>|z|)
sex -0.531 0.588 0.167 -3.18 0.0015

 exp(coef) exp(-coef) lower .95 upper .95
sex 0.588 1.7 0.424 0.816

Concordance= 0.579 (se = 0.021)
Likelihood ratio test= 10.6 on 1 df, p=0.001
Wald test = 10.1 on 1 df, p=0.001
Score (logrank) test = 10.3 on 1 df, p=0.001

survdiff(Surv(time, status)~sex, data=lung)

Call:
survdiff(formula = Surv(time, status) ~ sex, data = lung)

 N Observed Expected (O-E)^2/E (O-E)^2/V
sex=1 138 112 91.6 4.55 10.3
sex=2 90 53 73.4 5.68 10.3

 Chisq= 10.3 on 1 degrees of freedom, p= 0.001

Let’s create another model where we analyze all the variables in the dataset! This shows us how all the variables, when considered together, act to influence survival. Some are very strong predictors (sex, ECOG score). Interestingly, the Karnofsky performance score as rated by the physician was marginally significant, while the same score as rated by the patient was not.

fit <- coxph(Surv(time, status)~sex+age+ph.ecog+ph.karno+pat.karno+meal.cal+wt.loss, data=lung)
fit

Call:
coxph(formula = Surv(time, status) ~ sex + age + ph.ecog + ph.karno +
 pat.karno + meal.cal + wt.loss, data = lung)

 coef exp(coef) se(coef) z p
sex -6e-01 6e-01 2e-01 -2.7 0.006
age 1e-02 1e+00 1e-02 0.9 0.359
ph.ecog 7e-01 2e+00 2e-01 3.3 0.001
ph.karno 2e-02 1e+00 1e-02 2.0 0.046
pat.karno -1e-02 1e+00 8e-03 -1.5 0.123
meal.cal 3e-05 1e+00 3e-04 0.1 0.898
wt.loss -1e-02 1e+00 8e-03 -1.8 0.065

Likelihood ratio test=28 on 7 df, p=2e-04
n= 168, number of events= 121
 (60 observations deleted due to missingness)

Exercise 6

Let’s go back to the colon cancer dataset. Remember, you created a colondeath object in the first exercise that only includes survival (etype==2), not recurrence data points. See ?colon for more information about this dataset.

Take a look at levels(colondeath$rx). This tells you that the rx variable is the type of treatment the patient was on, which is either nothing (coded Obs, short for Observation), Levamisole (coded Lev), or Levamisole + 5-fluorouracil (coded Lev+5FU). This is a factor variable coded with these levels, in that order. This means that Obs is treated as the baseline group, and other groups are dummy-coded to represent the respective group.

With k levels of a categorical factor variable, you get k-1 dummy variables created, each 0/1, indicating that the sample is a particular non-reference category. Having value 0 for all dummy variables indicates that the sample is baseline.

	rx
	Lev
	Lev+5FU

	Obs
	0
	0

	Lev
	1
	0

	Lev+5FU
	0
	1

Exercise 7

Run a Cox proportional hazards regression model against this rx variable. How do you interpret the result? Which treatment seems to be significantly different from the control (Observation)?

 coef exp(coef) se(coef) z p
rxLev -0.03 0.97 0.11 -0.2 0.809
rxLev+5FU -0.37 0.69 0.12 -3.1 0.002

Likelihood ratio test=12 on 2 df, p=0.002
n= 929, number of events= 452

Exercise 8

Show the results using a Kaplan-Meier plot, with confidence intervals and the p-value.

Exercise 9

Fit another Cox regression model accounting for age, sex, and the number of nodes with detectable cancer. Notice the test statistic on the likelihood ratio test becomes much larger, and the overall model becomes more significant. What do you think accounted for this increase in our ability to model survival?

 coef exp(coef) se(coef) z p
rxLev -0.080 0.923 0.112 -0.7 0.5
rxLev+5FU -0.403 0.669 0.121 -3.3 8e-04
age 0.005 1.005 0.004 1.3 0.2
sex -0.028 0.972 0.096 -0.3 0.8
nodes 0.093 1.097 0.009 10.5 <2e-16

Likelihood ratio test=88 on 5 df, p=<2e-16
n= 911, number of events= 441
 (18 observations deleted due to missingness)

9.2.5 Categorizing for KM plots

Let’s go back to the lung data and look at a Cox model for age. Looks like age is very slightly significant when modeled as a continuous variable.

coxph(Surv(time, status)~age, data=lung)

Call:
coxph(formula = Surv(time, status) ~ age, data = lung)

 coef exp(coef) se(coef) z p
age 0.019 1.019 0.009 2 0.04

Likelihood ratio test=4 on 1 df, p=0.04
n= 228, number of events= 165

Now that your regression analysis shows you that age is marginally significant, let’s make a Kaplan-Meier plot. But, as we saw before, we can’t just do this, because we’ll get a separate curve for every unique value of age!

ggsurvplot(survfit(Surv(time, status)~age, data=lung))

One thing you might see here is an attempt to categorize a continuous variable into different groups – tertiles, upper quartile vs lower quartile, a median split, etc – so you can make the KM plot. But, how you make that cut is meaningful! Check out the help for ?cut. cut() takes a continuous variable and some breakpoints and creats a categorical variable from that. Let’s get the average age in the dataset, and plot a histogram showing the distribution of age.

mean(lung$age)
hist(lung$age)
ggplot(lung, aes(age)) + geom_histogram(bins=20)

Now, let’s try creating a categorical variable on lung$age with cut pounts at 0, 62 (the mean), and +Infinity (no upper limit). We could continue adding a labels= option here to label the groupings we create, for instance, as “young” and “old”. Finally, we could assign the result of this to a new object in the lung dataset.

cut(lung$age, breaks=c(0, 62, Inf))

 [1] (62,Inf] (62,Inf] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf]
 [9] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (0,62] (0,62] (62,Inf]
 [17] (62,Inf] (62,Inf] (0,62] (0,62] (62,Inf] (0,62] (0,62] (0,62]
 [25] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf]
 [33] (0,62] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf]
 [41] (62,Inf] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf]
 [49] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf] (0,62] (0,62] (0,62]
 [57] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf] (0,62] (62,Inf] (62,Inf]
 [65] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62]
 [73] (62,Inf] (0,62] (0,62] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf]
 [81] (0,62] (0,62] (0,62] (0,62] (0,62] (62,Inf] (0,62] (0,62]
 [89] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (62,Inf] (62,Inf]
 [97] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf]
[105] (0,62] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (62,Inf] (0,62]
[113] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf]
[121] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (62,Inf]
[129] (62,Inf] (0,62] (0,62] (0,62] (0,62] (0,62] (62,Inf] (62,Inf]
[137] (0,62] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf]
[145] (0,62] (0,62] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (0,62]
[153] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62]
[161] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (0,62] (0,62] (0,62]
[169] (0,62] (62,Inf] (0,62] (0,62] (0,62] (0,62] (0,62] (0,62]
[177] (0,62] (0,62] (0,62] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf]
[185] (0,62] (0,62] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (0,62]
[193] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (0,62]
 [reached getOption("max.print") -- omitted 28 entries]
Levels: (0,62] (62,Inf]

cut(lung$age, breaks=c(0, 62, Inf), labels=c("young", "old"))

 [1] old old young young young old old old young young young old
 [13] old young young old old old young young old young young young
 [25] old old young old young old old old young young young young
 [37] old old old old old old young young old old old old
 [49] old young old old old young young young old young young old
 [61] old young old old old old old old old old old young
 [73] old young young old young young old old young young young young
 [85] young old young young young old old old old young old old
 [97] old old old old young old young old young old young old
[109] young old old young old old young old young old old old
[121] old young old old old old young old old young young young
[133] young young old old young young young young old old old old
[145] young young old young old young old young young young young old
[157] old young old young young young old old old young young young
[169] young old young young young young young young young young young old
[181] young young old old young young old young old young old young
[193] young old old old old old young young
 [reached getOption("max.print") -- omitted 28 entries]
Levels: young old

the base r way:
lung$agecat <- cut(lung$age, breaks=c(0, 62, Inf), labels=c("young", "old"))

or the dplyr way:
lung <- lung %>%
 mutate(agecat=cut(age, breaks=c(0, 62, Inf), labels=c("young", "old")))

head(lung)

A tibble: 6 × 11
 inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0
ℹ 1 more variable: agecat <fct>

Now, what happens when we make a KM plot with this new categorization? It looks like there’s some differences in the curves between “old” and “young” patients, with older patients having slightly worse survival odds. But at p=.39, the difference in survival between those younger than 62 and older than 62 are not significant.

ggsurvplot(survfit(Surv(time, status)~agecat, data=lung), pval=TRUE)

But, what if we chose a different cut point, say, 70 years old, which is roughly the cutoff for the upper quartile of the age distribution (see ?quantile). The result is now marginally significant!

the base r way:
lung$agecat <- cut(lung$age, breaks=c(0, 70, Inf), labels=c("young", "old"))

or the dplyr way:
lung <- lung %>%
 mutate(agecat=cut(age, breaks=c(0, 70, Inf), labels=c("young", "old")))

plot!
ggsurvplot(survfit(Surv(time, status)~agecat, data=lung), pval=TRUE)

Remember, the Cox regression analyzes the continuous variable over the whole range of its distribution, where the log-rank test on the Kaplan-Meier plot can change depending on how you categorize your continuous variable. They’re answering a similar question in a different way: the regression model is asking, “what is the effect of age on survival?”, while the log-rank test and the KM plot is asking, “are there differences in survival between those less than 70 and those greater than 70 years old?”.

(New in survminer 0.2.4: the survminer package can now determine the optimal cutpoint for one or multiple continuous variables at once, using the surv_cutpoint() and surv_categorize() functions. Refer to this blog post for more information.)

9.3 TCGA

The Cancer Genome Atlas (TCGA) is a collaboration between the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) that collected lots of clinical and genomic data across 33 cancer types. The entire TCGA dataset is over 2 petabytes worth of gene expression, CNV profiling, SNP genotyping, DNA methylation, miRNA profiling, exome sequencing, and other types of data. You can learn more about TCGA at cancergenome.nih.gov. The data is now housed at the Genomic Data Commons Portal. There are lots of ways to access TCGA data without actually downloading and parsing through the data from GDC. We’ll cover more of these below. But first, let’s look at an R package that provides convenient, direct access to TCGA data.

9.3.1 RTCGA

The RTCGA package (bioconductor.org/packages/RTCGA) and all the associated data packages provide convenient access to clinical and genomic data in TCGA. Each of the data packages is a separate package, and must be installed (once) individually.

Load the bioconductor installer.
Try http:// if https:// doesn't work.
source("https://bioconductor.org/biocLite.R")

Install the main RTCGA package
biocLite("RTCGA")

Install the clinical and mRNA gene expression data packages
biocLite("RTCGA.clinical")
biocLite("RTCGA.mRNA")

Let’s load the RTCGA package, and use the infoTCGA() function to get some information about the kind of data available for each cancer type.

library(RTCGA)
infoTCGA()

9.3.1.1 Survival Analysis with RTCGA Clinical Data

Next, let’s load the RTCGA.clinical package and get a little help about what’s available there.

library(RTCGA.clinical)
?clinical

This tells us all the clinical datasets available for each cancer type. If we just focus on breast cancer, look at how big the data is! There are 1098 rows by 3703 columns in this data alone. Let’s look at some of the variable names. Be careful with View() here – with so many columns, depending on which version of RStudio you have that may or may not have fixed this issue, Viewing a large dataset like this may lock up your RStudio.

dim(BRCA.clinical)
names(BRCA.clinical)
View(BRCA.clinical)

We’re going to use the survivalTCGA() function from the RTCGA package to pull out survival information from the clinical data. It does this by looking at vital status (dead or alive) and creating a times variable that’s either the days to death or the days followed up before being censored. Look at the help for ?survivalTCGA for more info. You give it a list of clinical datasets to pull from, and a character vector of variables to extract. Let’s look at breast cancer, ovarian cancer, and glioblastoma multiforme. Let’s just extract the cancer type (admin.disease_code).

Create the clinical data
clin <- survivalTCGA(BRCA.clinical, OV.clinical, GBM.clinical,
 extract.cols="admin.disease_code")
Show the first few lines
head(clin)

 times bcr_patient_barcode patient.vital_status admin.disease_code
379.31.0 3767 TCGA-3C-AAAU 0 brca
379.31.0.1 3801 TCGA-3C-AALI 0 brca
379.31.0.2 1228 TCGA-3C-AALJ 0 brca
379.31.0.3 1217 TCGA-3C-AALK 0 brca
379.31.0.4 158 TCGA-4H-AAAK 0 brca
379.31.0.5 1477 TCGA-5L-AAT0 0 brca

How many samples of each type?
table(clin$admin.disease_code)

brca gbm ov
1098 595 576

Tabulate by outcome
xtabs(~admin.disease_code+patient.vital_status, data=clin) %>% addmargins()

 patient.vital_status
admin.disease_code 0 1 Sum
 brca 994 104 1098
 gbm 149 446 595
 ov 279 297 576
 Sum 1422 847 2269

Now let’s run a Cox PH model against the disease code. By default it’s going to treat breast cancer as the baseline, because alphabetically it’s first. But you can reorder this if you want with factor().

coxph(Surv(times, patient.vital_status)~admin.disease_code, data=clin)

Call:
coxph(formula = Surv(times, patient.vital_status) ~ admin.disease_code,
 data = clin)

 coef exp(coef) se(coef) z p
admin.disease_codegbm 2.9 17.9 0.1 26 <2e-16
admin.disease_codeov 1.5 4.7 0.1 13 <2e-16

Likelihood ratio test=904 on 2 df, p=<2e-16
n= 2269, number of events= 847

This tells us that compared to the baseline brca group, GBM patients have a ~18x increase in hazards, and ovarian cancer patients have ~5x worse survival. Let’s create a survival curve, visualize it with a Kaplan-Meier plot, and show a table for the first 5 years survival rates.

sfit <- survfit(Surv(times, patient.vital_status)~admin.disease_code, data=clin)
summary(sfit, times=seq(0,365*5,365))

Call: survfit(formula = Surv(times, patient.vital_status) ~ admin.disease_code,
 data = clin)

 admin.disease_code=brca
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 1096 0 1.000 0.00000 1.000 1.000
 365 588 13 0.981 0.00516 0.971 0.992
 730 413 11 0.958 0.00851 0.942 0.975
 1095 304 20 0.905 0.01413 0.878 0.933
 1460 207 9 0.873 0.01719 0.840 0.908
 1825 136 14 0.799 0.02474 0.752 0.849

 admin.disease_code=gbm
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 595 2 0.9966 0.00237 0.9920 1.0000
 365 224 257 0.5110 0.02229 0.4692 0.5567
 730 75 127 0.1998 0.01955 0.1649 0.2420
 1095 39 31 0.1135 0.01617 0.0858 0.1500
 1460 27 9 0.0854 0.01463 0.0610 0.1195
 1825 12 9 0.0534 0.01259 0.0336 0.0847

 admin.disease_code=ov
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 576 0 1.000 0.0000 1.000 1.000
 365 411 59 0.888 0.0139 0.861 0.915
 730 314 55 0.761 0.0198 0.724 0.801
 1095 210 59 0.602 0.0243 0.556 0.651
 1460 133 49 0.451 0.0261 0.402 0.505
 1825 78 39 0.310 0.0260 0.263 0.365

ggsurvplot(sfit, conf.int=TRUE, pval=TRUE)

9.3.1.2 Gene Expression Data

Let’s load the gene expression data.

library(RTCGA.mRNA)
?mRNA

Take a look at the size of the BRCA.mRNA dataset, show a few rows and columns.

dim(BRCA.mRNA)
BRCA.mRNA[1:5, 1:5]

Extra credit assignment: See if you can figure out how to join the gene expression data to the clinical data for any particular cancer type.

Take the mRNA data
BRCA.mRNA %>%
 # then make it a tibble (nice printing while debugging)
 as_tibble() %>%
 # then get just a few genes
 select(bcr_patient_barcode, PAX8, GATA3, ESR1) %>%
 # then trim the barcode (see head(clin), and ?substr)
 mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>%
 # then join back to clinical data
 inner_join(clin, by="bcr_patient_barcode")

Similar to how survivalTCGA() was a nice helper function to pull out survival information from multiple different clinical datasets, expressionsTCGA() can pull out specific gene expression measurements across different cancer types. See the help for ?expressionsTCGA. Let’s pull out data for PAX8, GATA-3, and the estrogen receptor genes from breast, ovarian, and endometrial cancer, and plot the expression of each with a box plot.

library(ggplot2)
expr <- expressionsTCGA(BRCA.mRNA, OV.mRNA, UCEC.mRNA,
 extract.cols = c("PAX8", "GATA3", "ESR1"))
head(expr)

A tibble: 6 × 5
 bcr_patient_barcode dataset PAX8 GATA3 ESR1
 <chr> <chr> <dbl> <dbl> <dbl>
1 TCGA-A1-A0SD-01A-11R-A115-07 BRCA.mRNA -0.542 2.87 3.08
2 TCGA-A1-A0SE-01A-11R-A084-07 BRCA.mRNA -0.595 2.17 2.39
3 TCGA-A1-A0SH-01A-11R-A084-07 BRCA.mRNA 0.500 1.32 0.791
4 TCGA-A1-A0SJ-01A-11R-A084-07 BRCA.mRNA -0.588 1.84 2.50
5 TCGA-A1-A0SK-01A-12R-A084-07 BRCA.mRNA -0.965 -6.03 -4.86
6 TCGA-A1-A0SM-01A-11R-A084-07 BRCA.mRNA 0.573 1.80 2.80

table(expr$dataset)

BRCA.mRNA OV.mRNA UCEC.mRNA
 590 561 54

ggplot(expr, aes(dataset, PAX8, fill=dataset)) + geom_boxplot()

ggplot(expr, aes(dataset, GATA3, fill=dataset)) + geom_boxplot()

ggplot(expr, aes(dataset, ESR1, fill=dataset)) + geom_boxplot()

ggplot(expr, aes(dataset, ESR1, fill=dataset)) + geom_violin()

We could also use tidyr to do this all in one go.

library(tidyr)
expr %>%
 as_tibble() %>%
 gather(gene, expression, PAX8, GATA3, ESR1) %>%
 ggplot(aes(dataset, expression, fill=dataset)) +
 geom_boxplot() +
 facet_wrap(~gene)

Exercise 10

The “KIPAN” cohort (in KIPAN.clinical) is the pan-kidney cohort, consisting of KICH (chromaphobe renal cell carcinoma), KIRC (renal clear cell carcinoma), and KIPR (papillary cell carcinoma). The KIPAN.clinical has KICH.clinical, KIRC.clinical, and KIPR.clinical all combined.

Using survivalTCGA(), create a new object called clinkid using the KIPAN.clinical cohort. For the columns to extract, get both the disease code and the patient’s gender (extract.cols=c("admin.disease_code", "patient.gender")). The first few rows will look like this.

 times bcr_patient_barcode patient.vital_status admin.disease_code
226.62.0 1158 TCGA-KL-8323 1 kich
226.62.0.1 4311 TCGA-KL-8324 0 kich
226.62.0.2 725 TCGA-KL-8325 1 kich
226.62.0.3 3322 TCGA-KL-8326 0 kich
226.62.0.4 3553 TCGA-KL-8327 0 kich
226.62.0.5 3127 TCGA-KL-8328 0 kich
 patient.gender
226.62.0 female
226.62.0.1 female
226.62.0.2 female
226.62.0.3 male
226.62.0.4 female
226.62.0.5 male

Exercise 11

The xtabs() command will produce tables of counts for categorical variables. Here’s an example for how to use xtabs() for the built-in colon cancer dataset, which will tell you the number of samples split by sex and by treatment.

xtabs(~rx+sex, data=colon)

 sex
rx 0 1
 Obs 298 332
 Lev 266 354
 Lev+5FU 326 282

Use the same command to examine how many samples you have for each kidney sample type, separately by sex.

 patient.gender
admin.disease_code female male
 kich 51 61
 kirc 191 346
 kirp 76 212

Exercise 12

Run a Cox PH regression on the cancer type and gender. What’s the effect of gender? Is it significant? How does survival differ by each type? Which has the worst prognosis?

 coef exp(coef) se(coef) z p
admin.disease_codekirc 1.59 4.92 0.34 4.6 4e-06
admin.disease_codekirp 1.00 2.71 0.38 2.6 0.009
patient.gendermale -0.06 0.94 0.15 -0.4 0.672

Likelihood ratio test=39 on 3 df, p=1e-08
n= 937, number of events= 203

Exercise 13

Create survival curves for each different subtype. a. Produce a Kaplan-Meier plot. b. Show survival tables each year for the first 5 years.

Call: survfit(formula = Surv(times, patient.vital_status) ~ admin.disease_code,
 data = clinkid)

 admin.disease_code=kich
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 111 0 1.000 0.0000 1.000 1.000
 365 86 2 0.980 0.0144 0.952 1.000
 730 72 2 0.954 0.0226 0.911 0.999
 1095 54 3 0.910 0.0329 0.848 0.977
 1460 44 1 0.893 0.0366 0.824 0.967
 1825 38 1 0.871 0.0415 0.794 0.957

 admin.disease_code=kirc
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 536 0 1.000 0.0000 1.000 1.000
 365 385 49 0.895 0.0142 0.868 0.924
 730 313 32 0.816 0.0186 0.781 0.853
 1095 250 26 0.744 0.0217 0.703 0.788
 1460 181 20 0.678 0.0243 0.633 0.728
 1825 112 16 0.606 0.0277 0.554 0.663

 admin.disease_code=kirp
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 0 288 0 1.000 0.0000 1.000 1.000
 365 145 10 0.941 0.0182 0.906 0.977
 730 100 8 0.877 0.0278 0.824 0.933
 1095 67 2 0.853 0.0316 0.793 0.917
 1460 54 3 0.810 0.0388 0.737 0.889
 1825 36 5 0.727 0.0495 0.636 0.831

9.3.2 Other TCGA Resources

RTCGA isn’t the only resource providing easy access to TCGA data. In fact, it isn’t even the only R/Bioconductor package. Take a look at some of the other resources shown below.

	TCGAbiolinks: another R package that allows direct query and analysis from the NCI GDC.

	R package: bioconductor.org/packages/TCGAbiolinks

	Paper: Nucleic Acids Research 2015 DOI: 10.1093/nar/gkv1507.

	cBioPortal: cbioportal.org

	Nice graphical user interface

	Quick/easy summary info on patients, demographics, mutations, copy number alterations, etc.

	Query individual genes, find coexpressed genes

	Survival analysis against different subtypes, expression, CNAs, etc.

	OncoLnc: oncolnc.org

	Focus on survival analysis and RNA-seq data.

	Simple query interface across all cancers for any mRNA, miRNA, or lncRNA gene (try SERPINA1)

	Precomputed Cox PH regression for every gene, for every cancer

	Kaplan-Meier plots produced on demand

	TANRIC: focus on noncoding RNA

	MEXPRESS: focus on methylation and gene expression

	In the medical world, we typically think of survival analysis literally – tracking time until death. But, it’s more general than that – survival analysis models time until an event occurs (any event). This might be death of a biological organism. But it could also be the time until a hardware failure in a mechanical system, time until recovery, time someone remains unemployed after losing a job, time until a ripe tomato is eaten by a grazing deer, time until someone falls asleep in a workshop, etc. Survival analysis also goes by reliability theory in engineering, duration analysis in economics, and event history analysis in sociology.↩︎

	This describes the most common type of censoring – right censoring. Left censoring less commonly occurs when the “start” is unknown, such as when an initial diagnosis or exposure time is unknown.↩︎

	And, following the definitions above, assumes that the cumulative hazard ratio between two groups remains constant over time.↩︎

	And there’s a chi-square-like statistical test for these differences called the log-rank test that compare the survival functions categorical groups.↩︎

	See the multiple regression section of the essential statistics section (Chapter 8).↩︎

	Cox regression and the logrank test from survdiff are going to give you similar results most of the time. The log-rank test is asking if survival curves differ significantly between two groups. Cox regression is asking which of many categorical or continuous variables significantly affect survival.↩︎

	Surv() can also take start and stop times, to account for left censoring. See the help for ?Surv.↩︎

	Loprinzi et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7, 1994.↩︎

	Where “dead” really refers to the occurance of the event (any event), not necessarily death.↩︎

10 Predictive Analytics: Predicting and Forecasting Influenza

This chapter will provide hands-on instruction for using machine learning algorithms to predict a disease outcome. We will cover data cleaning, feature extraction, imputation, and using a variety of models to try to predict disease outcome. We will use resampling strategies to assess the performance of predictive modeling procedures such as Random Forest, stochastic gradient boosting, elastic net regularized regression (LASSO), and k-nearest neighbors. We will also demonstrate demonstrate how to forecast future trends given historical infectious disease surveillance data using methodology that accounts for seasonality and nonlinearity.

Handout: Predictive Modeling Handout.

10.1 Predictive Modeling

Here we’re going to use some epidemiological data collected during an influenza A (H7N9) outbreak in China in 2013. Of 134 cases with data, 31 died, 46 recovered, but 57 cases do not have a recorded outcome. We’ll develop models capable of predicting death or recovery from the unlabeled cases. Along the way, we will:

	Do some exploratory data analysis and data visualization to get an overall sense of the data we have.

	Extract and recode features from the raw data that are more amenable to data mining / machine learning algorithms.

	Impute missing data points from some of the predictor variables.

	Use a framework that enables consistent access to hundreds of classification and regression algorithms, and that facilitates automated parameter tuning using bootstrapping-based resampling for model assessment.

	We will develop models using several different approaches (Random Forest, stochastic gradient boosting, elastic net regularized logistic regression, k-nearest neighbor) by training and testing the models on the data where the outcome is known

	We will compare the performance of each of the models and apply the best to predict the outcome for cases where we didn’t know the outcome.

10.1.1 H7N9 Outbreak Data

The data we’re using here is from the 2013 outbreak of influenza A H7N9 in China, analyzed by Kucharski et al., published in 2014.

Publication: A. Kucharski, H. Mills, A. Pinsent, C. Fraser, M. Van Kerkhove, C. A. Donnelly, and S. Riley. 2014. Distinguishing between reservoir exposure and human-to-human transmission for emerging pathogens using case onset data. PLOS Currents Outbreaks (2014) Mar 7 Edition 1.

Data: Kucharski A, Mills HL, Pinsent A, Fraser C, Van Kerkhove M, Donnelly CA, Riley S (2014) Data from: Distinguishing between reservoir exposure and human-to-human transmission for emerging pathogens using case onset data. Dryad Digital Repository. https://doi.org/10.5061/dryad.2g43n.

The data is made available in the outbreaks package, which is a collection of several simulated and real outbreak datasets, and has been very slightly modified for use here. The analysis we’ll do here is inspired by and modified in part from a similar analysis by Shirin Glander.

There are two datasets available in data.zip:

	h7n9.csv: The original dataset. Contains the following variables, with lots of missing data throughout.

	case_id: the sample identifier

	date_onset: date of onset of syptoms

	date_hospitalization: date the patient was hospitalized, if available

	date_outcome: date the outcome (recovery, death) was observed, if available

	outcome: “Death” or “Recover,” if available

	gender: male (m) or female (f)

	age: age of the individual, if known

	province: either Shanghai, Jiangsu, Zhejiang, or Other (lumps together less common provinces)

	h7n9_analysisready.csv: The “analysis-ready” dataset. This data has been cleaned up, with some “feature extraction” / variable recoding done to make the data more suitable to data mining / machine learning methods used here. We still have the outcome variable, either Death, Recover or unknown (NA).

	case_id: (same as above)

	outcome: (same as above)

	age: (same as above, imputed if unknown)

	male: Instead of sex (m/f), this is a 0/1 indicator, where 1=male, 0=female.

	hospital: Indicator variable whether or not the patient was hospitalized

	days_to_hospital: The number of days between onset and hospitalization

	days_to_outcome: The number of days between onset and outcome (if available)

	early_outcome: Whether or not the outcome was recorded prior to the median date of the outcome in the dataset

	Jiangsu: Indicator variable: 1 = the patient was from the Jiangsu province.

	Shanghai: Indicator variable: 1 = the patient was from the Shanghai province.

	Zhejiang: Indicator variable: 1 = the patient was from the Zhejiang province.

	Other: Indicator variable: 1 = the patient was from some other less common province.

10.1.2 Importing H7N9 data

First, let’s load the packages we’ll need initially.

library(dplyr)
library(readr)
library(tidyr)
library(ggplot2)

Now let’s read in the data and take a look. Notice that it correctly read in the dates as date-formatted variables. Later on, when we run functions such as median() on a date variable, it knows how to handle that properly. You’ll also notice that there are missing values throughout.

Read in data
flu <- read_csv("data/h7n9.csv")

View in RStudio (capital V)
View(flu)

Take a look
flu

A tibble: 134 × 8
 case_id date_onset date_hospitalization date_outcome outcome gender age
 <chr> <date> <date> <date> <chr> <chr> <dbl>
 1 case_1 2013-02-19 NA 2013-03-04 Death m 58
 2 case_2 2013-02-27 2013-03-03 2013-03-10 Death m 7
 3 case_3 2013-03-09 2013-03-19 2013-04-09 Death f 11
 4 case_4 2013-03-19 2013-03-27 NA <NA> f 18
 5 case_5 2013-03-19 2013-03-30 2013-05-15 Recover f 20
 6 case_6 2013-03-21 2013-03-28 2013-04-26 Death f 9
 7 case_7 2013-03-20 2013-03-29 2013-04-09 Death m 54
 8 case_8 2013-03-07 2013-03-18 2013-03-27 Death m 14
 9 case_9 2013-03-25 2013-03-25 NA <NA> m 39
10 case_10 2013-03-28 2013-04-01 2013-04-03 Death m 20
ℹ 124 more rows
ℹ 1 more variable: province <chr>

10.1.3 Exploratory data analysis

Let’s use ggplot2 to take a look at the data. Refer back to the visualization section (Chapter 5) if you need a refresher.

The outcome variable is the thing we’re most interested in here – it’s the thing we want to eventually predict for the unknown cases. Let’s look at the distribution of that outcome variable (Death, Recover or unknown (NA)), by age. We’ll create a density distribution looking at age, with the fill of the distribution colored by outcome status.

ggplot(flu, aes(age)) + geom_density(aes(fill=outcome), alpha=1/3)

Let’s look at the counts of the number of deaths, recoveries, and unknowns by sex, then separately by province.

ggplot(flu, aes(gender)) +
 geom_bar(aes(fill=outcome), position="dodge")

We can simply add a facet_wrap to split by province.

ggplot(flu, aes(gender)) +
 geom_bar(aes(fill=outcome), position="dodge") +
 facet_wrap(~province)

Let’s draw a boxplot showing the age distribution by province, by outcome. This shows that there’s a higher rate of death in older individuals but this is only observed in Jiangsu and Zhejiang provinces.

First just by age
ggplot(flu, aes(province, age)) + geom_boxplot()
Then by age and outcome
ggplot(flu, aes(province, age)) + geom_boxplot(aes(fill=outcome))

Let’s try something a little bit more advanced. First, take a look at the data again.

flu

Notice how we have three different date variables: date of onset, hospitalization, and outcome. I’d like to draw a plot showing the date on the x-axis with a line connecting the three points from onset, to hospitalization, to outcome (if known) for each patient. I’ll put age on the y-axis so the individuals are separated, and I’ll do this faceted by province.

First we need to use the gather function from the tidyr package to gather up all the date_? variables into a single column we’ll call key, with the actual values being put into a new column called date.

Gather the date columns
flugather <- flu %>%
 gather(key, date, starts_with("date_"))

Look at the data as is
flugather

Better: Show the data arranged by case_id so you see the three entries
flugather %>% arrange(case_id)

A tibble: 402 × 7
 case_id outcome gender age province key date
 <chr> <chr> <chr> <dbl> <chr> <chr> <date>
 1 case_1 Death m 58 Shanghai date_onset 2013-02-19
 2 case_1 Death m 58 Shanghai date_hospitalization NA
 3 case_1 Death m 58 Shanghai date_outcome 2013-03-04
 4 case_10 Death m 20 Shanghai date_onset 2013-03-28
 5 case_10 Death m 20 Shanghai date_hospitalization 2013-04-01
 6 case_10 Death m 20 Shanghai date_outcome 2013-04-03
 7 case_100 <NA> m 30 Zhejiang date_onset 2013-04-16
 8 case_100 <NA> m 30 Zhejiang date_hospitalization NA
 9 case_100 <NA> m 30 Zhejiang date_outcome NA
10 case_101 <NA> f 51 Zhejiang date_onset 2013-04-13
ℹ 392 more rows

Now that we have this, let’s visualize the number of days that passed between onset, hospitalization and outcome, for each case. We see that there are lots of unconnected points, especially in Jiangsu and Zhejiang provinces, where one of these dates isn’t known.

ggplot(flugather, aes(date, y=age, color=outcome)) +
 geom_point() +
 geom_path(aes(group=case_id)) +
 facet_wrap(~province)

10.1.4 Feature Extraction

The variables in our data are useful for summary statistics, visualization, EDA, etc. But we need to do some feature extraction or variable recoding to get the most out of machine learning models.

	Age: we’ll keep this one as is.

	Gender: instead of m/f, let’s convert this into a binary indicator variable where 0=female, 1=male.

	Province: along the same lines, let’s create binary classifiers that indicate Shanghai, Zhejiang, Jiangsu, or other provinces.

	Hospitalization: let’s create a binary classifier where 0=not hospitalized, 1=hospitalized.

	Dates: Let’s also take the dates of onset, hospitalization, and outcome, and transform these into days between onset and hospitalization, and days from onset to outcome. The algorithms aren’t going to look at one column then another to do this math – we have to extract this feature ourselves.

	Early outcome: let’s create another binary 0/1 indicating whether someone had an early outcome (earlier than the median outcome date observed).

Let’s build up this pipeline one step at a time. If you want to skip ahead, you can simply read in the already extracted/recoded/imputed dataset at data/h7n9_analysisready.csv.

First, let’s make a backup of the original data in case we mess something up.

flu_orig <- flu

10.1.4.1 Create gender / hospitalization indicators

Now let’s start recoding, one step at a time. First of all, when we mutate to add a new variable, we can put in a logical comparison to tell us whether a statement is TRUE or FALSE. For example, let’s look at the gender variable.

flu$gender

We can ask if gender is male (“m”) like this:

flu$gender=="m"

So we can do that with a mutate statement on a pipeline. Once we do that, we can remove the old gender variable. E.g.:

flu %>%
 mutate(male = gender=="m") %>%
 select(-gender)

Similarly, let’s get an indicator whether someone was hospitalized or not. If hospitalization is missing, this would return TRUE. If you want to ask whether they are not missing, you would use ! to negate the logical question, i.e., !is.na(flu$date_hospitalization).

flu$date_hospitalization
is.na(flu$date_hospitalization)
!is.na(flu$date_hospitalization)

So now, let’s add that to our pipeline from above.

flu %>%
 mutate(male = gender=="m") %>%
 select(-gender) %>%
 mutate(hospital = !is.na(date_hospitalization))

10.1.4.2 Convert dates to “days to ___”

Let’s continue to add days from onset to hospitalization and days to outcome by subtracting one date from the other, and converting the value to numeric. We’ll also create an early outcome binary variable indicating whether the date of the outcome was less than the median, after removing missing variables. We’ll finally remove all the variables that start with “date.” Finally, we’ll use the mutate_if function, which takes a predicate and an action function. We’ll ask – if the variable is logical (TRUE/FALSE), turn it into an integer (1/0).

What's the median outcome date?
median(flu$date_outcome, na.rm=TRUE)

Run the whole pipeline
flu %>%
 mutate(male = gender=="m") %>%
 select(-gender) %>%
 mutate(hospital = !is.na(date_hospitalization)) %>%
 mutate(days_to_hospital = as.numeric(date_hospitalization - date_onset)) %>%
 mutate(days_to_outcome = as.numeric(date_outcome - date_onset)) %>%
 mutate(early_outcome = date_outcome < median(date_outcome, na.rm=TRUE)) %>%
 select(-starts_with("date")) %>%
 mutate_if(is.logical, as.integer)

Once you’re satisfied your pipeline works, reassign the pipeline back to the flu object itself (remember, we created the backup above in case we messed something up here).

Make the assignment
flu <- flu %>%
 mutate(male = gender=="m") %>%
 select(-gender) %>%
 mutate(hospital = !is.na(date_hospitalization)) %>%
 mutate(days_to_hospital = as.numeric(date_hospitalization - date_onset)) %>%
 mutate(days_to_outcome = as.numeric(date_outcome - date_onset)) %>%
 mutate(early_outcome = date_outcome < median(date_outcome, na.rm=TRUE)) %>%
 select(-starts_with("date")) %>%
 mutate_if(is.logical, as.integer)

Take a look
flu

A tibble: 134 × 9
 case_id outcome age province male hospital days_to_hospital
 <chr> <chr> <dbl> <chr> <int> <int> <dbl>
 1 case_1 Death 58 Shanghai 1 0 NA
 2 case_2 Death 7 Shanghai 1 1 4
 3 case_3 Death 11 Other 0 1 10
 4 case_4 <NA> 18 Jiangsu 0 1 8
 5 case_5 Recover 20 Jiangsu 0 1 11
 6 case_6 Death 9 Jiangsu 0 1 7
 7 case_7 Death 54 Jiangsu 1 1 9
 8 case_8 Death 14 Zhejiang 1 1 11
 9 case_9 <NA> 39 Zhejiang 1 1 0
10 case_10 Death 20 Shanghai 1 1 4
ℹ 124 more rows
ℹ 2 more variables: days_to_outcome <dbl>, early_outcome <int>

10.1.4.3 Create indicators for province

Now, there’s one more thing we want to do. Instead of a single “province” variable that has multiple levels, we want to do the dummy coding ourselves. When we ran regression models R handled this internally without our intervention. But we need to be explicit here. Here’s one way to do it.

First, there’s a built-in function called model.matrix that creates dummy codes. You have to give it a formula like you do in linear models, but here, I give it a ~0+variable syntax so that it doesn’t try to create an intercept. That is, instead of k-1 dummy variables, it’ll create k. Try it.

model.matrix(~0+province, data=flu)

There’s another built-in function called cbind that binds columns together. This can be dangerous to use if you’re not certain that rows are in the same order (there, it’s better to use an inner join). But here, we’re certain they’re in the same order. Try binding the results of that to the original data.

cbind(flu, model.matrix(~0+province, data=flu))

Finally, turn it into a tibble and select out the original province variable. Once you’ve run the pipeline, go back and make the assignment back to the flu object itself.

flu <- cbind(flu, model.matrix(~0+province, data=flu)) %>%
 as_tibble() %>%
 select(-province)
flu

A tibble: 134 × 12
 case_id outcome age male hospital days_to_hospital days_to_outcome
 <chr> <chr> <dbl> <int> <int> <dbl> <dbl>
 1 case_1 Death 58 1 0 NA 13
 2 case_2 Death 7 1 1 4 11
 3 case_3 Death 11 0 1 10 31
 4 case_4 <NA> 18 0 1 8 NA
 5 case_5 Recover 20 0 1 11 57
 6 case_6 Death 9 0 1 7 36
 7 case_7 Death 54 1 1 9 20
 8 case_8 Death 14 1 1 11 20
 9 case_9 <NA> 39 1 1 0 NA
10 case_10 Death 20 1 1 4 6
ℹ 124 more rows
ℹ 5 more variables: early_outcome <int>, provinceJiangsu <dbl>,
provinceOther <dbl>, provinceShanghai <dbl>, provinceZhejiang <dbl>

Optional: Notice how the new variables are provinceJiangsu, provinceOther, provinceShanghai, provinceZhejiang. If we want to strip off the “province” we can do that. There’s a built-in command called gsub that can help here. Take a look at the help for ?gsub.

Take a look at the names of the flu dataset.
names(flu)

Remove "province"
gsub("province", "", names(flu))

Now make the assignment back to names(flu)
names(flu) <- gsub("province", "", names(flu))

Take a look
flu

10.1.5 Imputation

We have a lot of missing data points throughout. Most of the data mining algorithms we’re going to use later can’t handle missing data, so observations with any missing data are excluded from the model completely. If we have a large dataset and only a few missing values, it’s probably better to exclude them and proceed. But since we’ve already got a pretty low number of observations, we need to try to impute missing values to maximize our use of the data we have.

There are lots of different imputation approaches. An overly simplistic method is simply a mean or median imputation – you simply plug in the mean value for that column for the missing sample’s value. This leaves the mean unchanged (good) but artificially decreases the variance (not good). We’re going to use the mice package for imputation (Multivariate Imputation by Chained Equations). This package gives you functions that can impute continuous, binary, and ordered/unordered categorical data, imputing each incomplete variable with a separate model. It tries to account for relations in the data and uncertainty about those relationships. The methods are described in the paper.

Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of statistical software, 45(3).

Let’s load the mice package, and take a look at our data again.

library(mice)
flu

A tibble: 134 × 12
 case_id outcome age male hospital days_to_hospital days_to_outcome
 <chr> <chr> <dbl> <int> <int> <dbl> <dbl>
 1 case_1 Death 58 1 0 NA 13
 2 case_2 Death 7 1 1 4 11
 3 case_3 Death 11 0 1 10 31
 4 case_4 <NA> 18 0 1 8 NA
 5 case_5 Recover 20 0 1 11 57
 6 case_6 Death 9 0 1 7 36
 7 case_7 Death 54 1 1 9 20
 8 case_8 Death 14 1 1 11 20
 9 case_9 <NA> 39 1 1 0 NA
10 case_10 Death 20 1 1 4 6
ℹ 124 more rows
ℹ 5 more variables: early_outcome <int>, Jiangsu <dbl>, Other <dbl>,
Shanghai <dbl>, Zhejiang <dbl>

Eventually we want to predict the outcome, so we don’t want to factor that into the imputation. We also don’t want to factor in the case ID, because that’s just an individual’s identifier. So let’s create a new dataset selecting out those two variables so we can try to impute everything else.

flu %>%
 select(-1, -2)

The mice() function itself returns a special kind of object called a multiply imputed data set, and from this we can run mice’s complete() on the thing returned by mice() to complete the dataset that was passed to it. Here’s what we’ll do. We’ll take the flu data, select out the first two columns, create the imputation, then complete the original data, assigning that to a new dataset called fluimp. First let’s set the random number seed generator to some number (use the same as I do if you want identical results).

set.seed(42)
fluimp <- flu %>%
 select(-1, -2) %>%
 mice(print=FALSE) %>%
 complete()
fluimp

Now, we need to put the data back together again. We do this by selecting the original two columns from the original flu data, and then using cbind() like above to mash the two datasets together side by side. Finally, we’ll turn it back into a tibble. Once you’ve run the pipeline and you like the result, assign it back to fluimp.

Run the pipeline successfully first before you reassign!
fluimp <- flu %>%
 select(1,2) %>%
 cbind(fluimp) %>%
 as_tibble()
fluimp

A tibble: 134 × 12
 case_id outcome age male hospital days_to_hospital days_to_outcome
 <chr> <chr> <dbl> <int> <int> <dbl> <dbl>
 1 case_1 Death 58 1 0 7 13
 2 case_2 Death 7 1 1 4 11
 3 case_3 Death 11 0 1 10 31
 4 case_4 <NA> 18 0 1 8 38
 5 case_5 Recover 20 0 1 11 57
 6 case_6 Death 9 0 1 7 36
 7 case_7 Death 54 1 1 9 20
 8 case_8 Death 14 1 1 11 20
 9 case_9 <NA> 39 1 1 0 18
10 case_10 Death 20 1 1 4 6
ℹ 124 more rows
ℹ 5 more variables: early_outcome <int>, Jiangsu <dbl>, Other <dbl>,
Shanghai <dbl>, Zhejiang <dbl>

At this point we’re almost ready to do some predictive modeling! If you didn’t make it this far and you just want to read in the analysis ready dataset, you can do that too.

fluimp <- read_csv("data/h7n9_analysisready.csv")

10.1.6 The caret package

We’re going to use the caret package for building and testing predictive models using a variety of different data mining / ML algorithms. The package was published in JSS in 2008. Max Kuhn’s slides from the 2013 useR! conference are also a great resource, as is the caret package vignette, and the detailed e-book documentation.

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5), 1 - 26. doi: http://dx.doi.org/10.18637/jss.v028.i05

The caret package (short for Classification And REgression Training) is a set of functions that streamline the process for creating and testing a wide variety of predictive models with different resampling approaches, as well as estimating variable importance from developed models. There are many different modeling functions in R spread across many different packages, and they all have different syntax for model training and/or prediction. The caret package provides a uniform interface the functions themselves, as well as a way to standardize common tasks (such parameter tuning and variable importance).

The train function from caret is used to:

	evaluate, using resampling, the effect of model tuning parameters on performance

	choose the “optimal” model across these parameters

	estimate model performance from a training set

10.1.6.1 Models available in caret

First you have to choose a specific type of model or algorithm. Currently there are 239 different algorithms implemented in caret. Caret provides the interface to the method, but you still need the external package installed. For example, we’ll be fitting a Random Forest model, and for that we’ll need the randomForest package installed. You can see all the methods that you can deploy by looking at the help for train.

library(caret)
?train

From here, click on the link to see the available models or models by tag. From here you can search for particular models by name. We’re going to fit models using Random Forest, stochastic gradient boosting, k-Nearest Neighbors, Lasso and Elastic-Net Regularized Generalized Linear Models. These require the packages randomForest, gbm, kknn, and glmnet, respectively.

Each of the models may have one or more tuning parameters – some value or option you can set to tweak how the algorithm develops. In k-nearest neighbors, we can try different values of k. With random forest, we can set the mtrym_{\text{try}} option – the algorithm will select mtrym_{\text{try}} number of predictors to attempt a split for classification. Caret attempts to do this using a procedure like this:

The caret model training algorithm. Image from the caret paper.

That is, it sweeps through each possible parameter you can set for the particular type of model you choose, and uses some kind of resampling scheme with your training data, fitting the model on a subset and testing on the held-out samples.

10.1.6.2 Resampling

The default resampling scheme caret uses is the bootstrap. Bootstrapping takes a random sample with replacement from your data that’s the same size of the original data. Samples might be selected more than once, and some aren’t selected at all. On average, each sample has a ~63.2% chance of showing up at least once in a bootstrap sample. Some samples won’t show up at all, and these held out samples are the ones that are used for testing the performance of the trained model. You repeat this process many times (e.g., 25, 100, etc) to get an average performance estimate on unseen data. Here’s what it looks like in practice.

Bootstrapping schematic. Image from Max Kuhn’s 2013 useR! talk.

Many alternatives exist. Another popular approach is cross-validation. Here, a subset of your data (e.g., 4/5ths, or 80%) is used for training, and the remaining 1/5th or 20% is used for performance assessment. You slide the cross-validation interval over and use the next 4/5ths for training and 1/5th for testing. You do this again for all 5ths of the data. You can optionally repeat this process many times (repeated cross-validation) to get an average cross validation prediction accuracy for a given model and set of tuning parameters.

The trainControl option in the train function controls this, and you can learn more about this under the Basic Parameter Tuning section of the caret documentation.

10.1.7 Model training

Let’s try it out! If you didn’t make it through the data preprocessing steps and you just want to read in the analysis ready dataset, you can do this:

fluimp <- read_csv("data/h7n9_analysisready.csv")

10.1.7.1 Splitting data into known and unknown outcomes

Before we continue, let’s split the dataset into samples where we know the outcome, and those where we don’t. The unknown samples will be the ones where is.na(outcome) is TRUE. So you can use a filter statement.

Run the pipeline successfully first before you reassign!
These are samples with unknown data we'll use later to predict
unknown <- fluimp %>%
 filter(is.na(outcome))
unknown

The known samples are the cases where !is.na(outcome) is TRUE, that is, cases where the outcome is not (!) missing. One thing we want to do here while we’re at it is remove the case ID. This is just an arbitrary numerically incrementing counter and we don’t want to use this in building a model!

Run the pipeline successfully first before you reassign!
Samples with known outcomes used for model training.
known <- fluimp %>%
 filter(!is.na(outcome)) %>%
 select(-case_id)
known

10.1.7.2 A note on reproducibility and set.seed()

When we train a model using resampling, that sampling is going to happen pseudo-randomly. Try running this function which generates five numbers from a random uniform distribution between 0 and 1.

runif(5)

If you run that function over and over again, you’ll get different results. But, we can set the random number seed generator with any value we choose, and we’ll get the same result. Try setting the seed, drawing the random numbers, then re-setting the same seed, and re-running the runif function again. You should get identical results.

set.seed(22908)
runif(5)

Eventually I’m going to compare different models to each other, so I want to set the random number seed generator to the same value for each model so the same random bootstrap samples are identical across models.

10.1.7.3 Random Forest

Let’s fit a random forest model. See the help for ?train and click on the link therein to see what abbreviations correspond to which model. First set the random number seed generator to some number, e.g., 8382, that we’ll use for all other models we make. The model forumula here takes the know data, and the responseVar~. syntax says “predict responseVar using every other variable in the data.” Finally, notice how when we call train() from the caret package using “rf” as the type of model, it automatically loads the randomForest package that you installed. If you didn’t have it installed, it would probably ask you to install it first.

Set the random number seed generator
set.seed(8382)

Fit a random forest model for outcome against everything in the model (~.)
modrf <- train(outcome~., data=known, method="rf")

Take a look at the output
modrf

Random Forest

77 samples
10 predictors
 2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

 mtry Accuracy Kappa
 2 0.688 0.328
 6 0.684 0.322
 10 0.693 0.345

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 10.

Take a look at what that tells us. It tells us it’s fitting a Random Forest model using 77 samples, predicting a categorical outcome class (Death or Recover) based on 10 predictors. It’s not doing any pre-processing like centering or scaling, and it’s doing bootstrap resampling of 77 samples with replacement, repeated 25 times each. Random Forest has a single tuning parameter, mtrym_{\text{try}} – the algorithm will select mtrym_{\text{try}} number of predictors to attempt a split for classification when building a classification tree. The caret package does 25 bootstrap resamples for different values of mtrym_{\text{try}} (you can also control this too if you want), and computes accuracy and kappa measures of performance on the held-out samples.

Accuracy is the number of true assignments to the correct class divided by the total number of samples. Kappa takes into account the expected accuracy while considering chance agreement, and is useful for extremely imbalanced class distributions. For continuous outcomes, you can measure things like RMSE or correlation coefficients.

A bit about random forests. Random forests are an ensemble learning approach based on classification trees. The CART (classification and regression tree) method searches through all available predictors to try to find a value of a single variable that splits the data into two groups by minimizing the impurity of the outcome between the two groups. The process is repeated over and over again until a hierarchical (tree) structure is created. But trees don’t have great performance (prediction accuracy) compared to other models. Small changes in the data can drastically affect the structure of the tree.

Tree algorithms are improved by ensemble approaches - instead of growing a single tree, grow many trees and aggregate (majority vote or averaging) the predictions made by the ensemble. The random forest algorithm is essentially:

	From the training data of n samples, draw a bootstrap sample of size n.

	For each bootstrap sample, grow a classification tree, but with a small modification compared to the traditional algorithm: instead of selecting from all possible predictor variables to form a split, choose the best split among a randomly selected subset of mtrym_{\text{try}} predictors. Here, mtrym_{\text{try}} is the only tuning parameter. The trees are grown to their maximum size and not “pruned” back.

	Repeat the steps agove until a large number of trees is grown.

	Estimate the performance of the ensemble of trees using the “out-of-bag” samples - i.e., those that were never selected during the bootstrap procedure in step #1.

	Estimate the importance of each variable in the model by randomly permuting each predictor variable in testing on the out-of-bag samples. If a predictor is important, prediction accuracy will degrade. If the predictor isn’t that helpful, performance doesn’t deteriorate as much.

Random forests are efficient compared to growing a single tree. For one, the RF algorithm only selects from mtrym_{\text{try}} predictors at each step, rather than all available predictors. Usually mtrym_{\text{try}} is by default somewhere close to the square root of the total number of available predictors, so the search is very fast. Second, while the traditional CART tree algorithm has to go through extensive cross-validation based pruning to avoid overfitting, the RF algorithm doesn’t do any pruning at all. In fact, building an RF model can be faster than building a single tree!

Caret also provides a function for assessing the importance of each variable. The varImp function knows what kind of model was fitted and knows how to estimate variable importance. For Random Forest, it’s an estimate of how much worse the prediction gets after randomly shuffling the values of each predictor variable in turn. A variable that’s important will result in a much worse prediction than a variable that’s not as meaningful.

varImp(modrf, scale=TRUE)

rf variable importance

 Overall
age 100.000
days_to_outcome 60.642
days_to_hospital 38.333
early_outcome 36.591
Other 15.772
hospital 8.410
male 3.758
Shanghai 1.687
Jiangsu 0.133
Zhejiang 0.000

You can also pass that whole thing to plot(), or wrap the statement in plot(), to see a graphical representation.

varImp(modrf, scale=TRUE) %>% plot()

10.1.7.4 Stochastic Gradient Boosting

Let’s try a different method, stochastic gradient boosting, which uses a different method for building an ensemble of classification trees (see this post for a discussion of bagging vs boosting). This requires the gbm package. Again, set the random seed generator.

set.seed(8382)
modgbm <- train(outcome~., data=known, method="gbm", verbose=FALSE)
modgbm

Stochastic Gradient Boosting

77 samples
10 predictors
 2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

 interaction.depth n.trees Accuracy Kappa
 1 50 0.630 0.210
 1 100 0.627 0.210
 1 150 0.630 0.213
 2 50 0.633 0.222
 2 100 0.636 0.218
 2 150 0.632 0.208
 3 50 0.616 0.188
 3 100 0.639 0.227
 3 150 0.636 0.218

Tuning parameter 'shrinkage' was held constant at a value of 0.1

Tuning parameter 'n.minobsinnode' was held constant at a value of 10
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 100, interaction.depth =
 3, shrinkage = 0.1 and n.minobsinnode = 10.

Notice how stochastic gradient boosting has two different tuning parameters - interaction depth and n trees. There were others (shrinkage, and n.minobsinnode) that were held constant. The caret package automates the bootstrap resampling based performance assessment across all combinations of depth and ntrees, and it tells you where you got the best performance. Notice that the performance here doesn’t seem to be as good as random forest. We can also look at variable importance here too, and see similar rankings.

library(gbm) # needed because new version of caret doesn't load
varImp(modgbm, scale=TRUE)
varImp(modgbm, scale=TRUE) %>% plot()

10.1.7.5 Model comparison: Random Forest vs Gradient Boosting

Let’s compare those two models. Because the random seed was set to the same number (8382), the bootstrap resamples were identical across each model. Let’s directly compare the results for the best models from each method.

modsum <- resamples(list(gbm=modgbm, rf=modrf))
summary(modsum)

Call:
summary.resamples(object = modsum)

Models: gbm, rf
Number of resamples: 25

Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
gbm 0.483 0.577 0.625 0.639 0.692 0.812 0
rf 0.552 0.654 0.692 0.693 0.731 0.864 0

Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
gbm -0.1600 0.103 0.250 0.227 0.319 0.591 0
rf -0.0162 0.255 0.366 0.345 0.421 0.697 0

It appears that random forest is doing much better in terms of both accuracy and kappa. Let’s train a few other types of models.

10.1.7.6 Elastic net regularized logistic regression

Elastic net regularization is a method that combines both the lasso and ridge methods of reguarizing a model. Regularization is a method for penalizing a model as it gains complexity with more predictors in an attempt to avoid overfitting. You’ll need the glmnet package for this.

set.seed(8382)
modglmnet <- train(outcome~., data=known, method="glmnet")
modglmnet

glmnet

77 samples
10 predictors
 2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

 alpha lambda Accuracy Kappa
 0.10 0.000391 0.635 0.226
 0.10 0.003908 0.634 0.226
 0.10 0.039077 0.630 0.217
 0.55 0.000391 0.635 0.226
 0.55 0.003908 0.633 0.223
 0.55 0.039077 0.633 0.226
 1.00 0.000391 0.635 0.226
 1.00 0.003908 0.630 0.215
 1.00 0.039077 0.643 0.243

Accuracy was used to select the optimal model using the largest value.
The final values used for the model were alpha = 1 and lambda = 0.0391.

10.1.7.7 k-nearest neighbor

k-nearest neighbor attempts to assign samples to their closest labeled neighbors in high-dimensional space. You’ll need the kknn package for this.

set.seed(8382)
modknn <- train(outcome~., data=known, method="kknn")
modknn

k-Nearest Neighbors

77 samples
10 predictors
 2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

 kmax Accuracy Kappa
 5 0.635 0.218
 7 0.635 0.218
 9 0.633 0.214

Tuning parameter 'distance' was held constant at a value of 2
Tuning
 parameter 'kernel' was held constant at a value of optimal
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were kmax = 7, distance = 2 and kernel
 = optimal.

10.1.7.8 Compare all the models

Now let’s look at the performance characteristics for the best performing model across all four types of models we produced. It still looks like random forest is coming through as the winner.

modsum <- resamples(list(gbm=modgbm, rf=modrf, glmnet=modglmnet, knn=modknn))
summary(modsum)

Call:
summary.resamples(object = modsum)

Models: gbm, rf, glmnet, knn
Number of resamples: 25

Accuracy
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
gbm 0.483 0.577 0.625 0.639 0.692 0.812 0
rf 0.552 0.654 0.692 0.693 0.731 0.864 0
glmnet 0.467 0.615 0.654 0.643 0.692 0.773 0
knn 0.452 0.586 0.615 0.635 0.667 0.818 0

Kappa
 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
gbm -0.1600 0.103 0.250 0.227 0.319 0.591 0
rf -0.0162 0.255 0.366 0.345 0.421 0.697 0
glmnet -0.0284 0.150 0.267 0.243 0.319 0.538 0
knn -0.2760 0.143 0.199 0.218 0.318 0.627 0

The bwplot() function can take this model summary object and visualize it.

bwplot(modsum)

10.1.8 Prediction on unknown samples

Once we have a model trained it’s fairly simple to predict the class of the unknown samples. Take a look at the unknown data again:

unknown

Now, since Random Forest worked best, let’s use that model to predict the outcome!

predict(modrf, newdata=unknown)

 [1] Recover Recover Death Recover Death Death Recover Recover Death
[10] Recover Death Recover Recover Recover Recover Death Recover Death
[19] Death Death Recover Recover Recover Recover Recover Recover Recover
[28] Recover Death Death Recover Recover Recover Recover Recover Recover
[37] Recover Recover Recover Recover Recover Recover Recover Death Recover
[46] Death Recover Death Recover Recover Recover Recover Recover Recover
[55] Recover Recover Recover
Levels: Death Recover

This gives you a vector of values that would be the outcome for the individuals in the unknown dataset. From here it’s pretty simple to put them back in the data with a mutate().

unknown %>%
 mutate(outcome=predict(modrf, newdata=unknown))

A tibble: 57 × 12
 case_id outcome age male hospital days_to_hospital days_to_outcome
 <chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 case_4 Recover 18 0 1 8 46
 2 case_9 Recover 39 1 1 0 18
 3 case_15 Death 34 0 0 11 38
 4 case_16 Recover 51 1 0 3 20
 5 case_22 Death 56 1 1 4 17
 6 case_28 Death 51 1 0 6 6
 7 case_31 Recover 43 1 0 4 21
 8 case_32 Recover 46 1 0 3 20
 9 case_38 Death 28 1 0 2 7
10 case_39 Recover 38 1 1 0 18
ℹ 47 more rows
ℹ 5 more variables: early_outcome <dbl>, Jiangsu <dbl>, Other <dbl>,
Shanghai <dbl>, Zhejiang <dbl>

Alternatively, you could pass in type="prob" to get prediction probabilities instead of predicted classes.

predict(modrf, newdata=unknown, type="prob") %>% head()

 Death Recover
1 0.040 0.960
2 0.030 0.970
3 0.564 0.436
4 0.138 0.862
5 0.774 0.226
6 0.972 0.028

You could also imagine going further to get the prediction probabilities out of each type of model we made. You could add up the prediction probabilities for Death and Recovery for each individual across model types, and then compute a ratio. If across all the models that ratio is, for example, 2x in favor of death, you could predict death, or if it’s 2x in favor of recovery, you predict recover, and if it’s in between, you might call it “uncertain.” This lets you not only reap the advantages of ensemble learning within a single algorithm, but also lets you use information across a variety of different algorithm types.

10.2 Forecasting

10.2.1 The Prophet Package

Forecasting is a common data science task that helps with things like capacity planning, goal setting, anomaly detection, and resource use projection. Forecasting can involve complex models, where overly simplistic models can be brittle and