
Biological Data Science with R

Stephen D. Turner, Ph.D.

2019-01-01

Table of contents

Preface 8

Acknowledgements 10

I Core Curriculum 11

1 Basics 12
1.1 RStudio . 12
1.2 Basic operations . 13
1.3 Functions . 15
1.4 Tibbles (data frames) . 17

2 Tibbles 18
2.1 Our data . 18
2.2 Reading in data . 19

2.2.1 dplyr and readr . 19
2.2.2 read_csv() . 19

2.3 Inspecting data.frame objects . 20
2.3.1 Built-in functions . 20
2.3.2 Other packages . 23

2.4 Accessing variables & subsetting data frames 24
2.5 BONUS: Preview to advanced manipulation . 26

3 Data Manipulation with dplyr 28
3.1 Review . 28

3.1.1 Our data . 28
3.1.2 Reading in data . 29

3.2 The dplyr package . 30
3.3 dplyr verbs . 30

3.3.1 filter() . 31
3.3.2 select() . 36
3.3.3 mutate() . 39
3.3.4 arrange() . 40
3.3.5 summarize() . 42
3.3.6 group_by() . 43

2

3.4 The pipe: |> . 46
3.4.1 How |> works . 46
3.4.2 Nesting versus |> . 47

3.5 Exercises . 50

4 Tidy Data and Advanced Data Manipulation 57
4.1 Tidy data . 57
4.2 The tidyr package . 58

4.2.1 gather() . 58
4.2.2 separate() . 60
4.2.3 |> it all together . 61

4.3 Tidy the yeast data . 63
4.3.1 separate() the NAME . 65
4.3.2 gather() the data . 66
4.3.3 inner_join() to GO . 67
4.3.4 Finishing touches . 69

5 Data Visualization with ggplot2 72
5.1 Review . 72

5.1.1 Gapminder data . 72
5.1.2 dplyr review . 73

5.2 About ggplot2 . 75
5.3 Plotting bivariate data: continuous Y by continuous X 76

5.3.1 Adding layers . 85
5.3.2 Faceting . 89
5.3.3 Saving plots . 91

5.4 Plotting bivariate data: continuous Y by categorical X 92
5.5 Plotting univariate continuous data . 102
5.6 Publication-ready plots & themes . 110

6 Refresher: Tidy Exploratory Data Analysis 114
6.1 Chapter overview . 114
6.2 Horror Movies & Profit . 115

6.2.1 About the data . 115
6.2.2 Import and clean . 115
6.2.3 Exploratory Data Analysis . 118
6.2.4 Join to IMDB reviews . 133

6.3 College Majors & Income . 141
6.3.1 About the data . 141
6.3.2 Import and clean . 142
6.3.3 Exploratory Data Analysis . 143

3

7 Reproducible Reporting with RMarkdown 156
7.1 Who cares about reproducible research? . 156

7.1.1 Reproducibility is hard! . 159
7.1.2 What’s in it for you? . 159
7.1.3 Some recommendations for reproducible research 159

7.2 RMarkdown . 161
7.2.1 Markdown . 161
7.2.2 RMarkdown workflow . 161

7.3 Authoring RMarkdown documents . 162
7.3.1 From scratch . 162
7.3.2 From a template with YAML metadata 164
7.3.3 Chunk options . 165
7.3.4 Tables . 166
7.3.5 Changing output formats . 167

7.4 Distributing Analyses: Rpubs . 167

II Electives 168

8 Essential statistics 169
8.1 Our data: NHANES . 169

8.1.1 About NHANES . 169
8.1.2 Import & inspect . 171

8.2 Descriptive statistics . 174
8.2.1 Missing data . 175
8.2.2 EDA . 176

8.3 Continuous variables . 181
8.3.1 T-tests . 181
8.3.2 Wilcoxon test . 183
8.3.3 Linear models . 184
8.3.4 ANOVA . 188
8.3.5 Linear regression . 191
8.3.6 Multiple regression . 194

8.4 Discrete variables . 198
8.4.1 Contingency tables . 198
8.4.2 Logistic regression . 202

8.5 Power & sample size . 206
8.5.1 T-test power/N . 207
8.5.2 Proportions power/N . 208

8.6 Tidying models . 210
8.7 Additional topics & recommended reading . 217

8.7.1 1. Batch effects . 217
8.7.2 2. What’s my n? . 218

4

8.7.3 3. Technical versus biological replicates 218

9 Survival Analysis 219
9.1 Background . 219

9.1.1 Definitions . 219
9.1.2 Cox PH Model . 221

9.2 Survival analysis in R . 222
9.2.1 Getting started . 222
9.2.2 Survival Curves . 223
9.2.3 Kaplan-Meier Plots . 230
9.2.4 Cox Regression . 236
9.2.5 Categorizing for KM plots . 241

9.3 TCGA . 246
9.3.1 RTCGA . 247
9.3.2 Other TCGA Resources . 257

10 Predictive Analytics: Predicting and Forecasting Influenza 259
10.1 Predictive Modeling . 259

10.1.1 H7N9 Outbreak Data . 260
10.1.2 Importing H7N9 data . 261
10.1.3 Exploratory data analysis . 262
10.1.4 Feature Extraction . 266
10.1.5 Imputation . 271
10.1.6 The caret package . 273
10.1.7 Model training . 275
10.1.8 Prediction on unknown samples . 285

10.2 Forecasting . 287
10.2.1 The Prophet Package . 287
10.2.2 CDC ILI time series data . 289
10.2.3 Forecasting with prophet . 290

11 Text Mining and NLP 295
11.1 Chapter overview . 295
11.2 The Tidy Text Format . 295

11.2.1 The unnest_tokens function . 296
11.2.2 Example: Jane Austen Novels . 298

11.3 Sentiment Analysis . 300
11.3.1 Sentiment analysis with tidy tools . 302
11.3.2 Measuring contribution to sentiment . 306

11.4 Word and Document Frequencies . 308
11.4.1 TF, IDF, and TF-IDF . 308
11.4.2 Project Gutenberg . 312

5

11.5 Topic Modeling . 315
11.5.1 Document-term matrix . 316
11.5.2 Word-topic probabilities . 317
11.5.3 Document-topic probabilities . 322

11.6 Case Studies & Examples . 323
11.6.1 The Great Library Heist . 323
11.6.2 Happy Galentine’s Day! . 324
11.6.3 Who wrote the anti-Trump New York Times op-ed? 326
11.6.4 Seinfeld dialogues . 327
11.6.5 Sentiment analysis in Shakespeare tragedies 327
11.6.6 Authorship of the Federalist Papers . 329

12 Count-Based Differential Expression Analysis of RNA-seq Data 331
12.1 Background . 331

12.1.1 The biology . 331
12.1.2 Data pre-processing . 332
12.1.3 Data structure . 333

12.2 Import data . 334
12.3 Poor man’s DGE . 335
12.4 DESeq2 analysis . 342

12.4.1 DESeq2 package . 342
12.4.2 Importing data . 342
12.4.3 DESeq pipeline . 346
12.4.4 Getting results . 347

12.5 Data Visualization . 350
12.5.1 Plotting counts . 350
12.5.2 MA & Volcano plots . 351
12.5.3 Transformation . 353
12.5.4 PCA . 354
12.5.5 Bonus: Heatmaps . 355

12.6 Record sessionInfo() . 357
12.7 Pathway Analysis . 358

13 Visualizing and Annotating Phylogenetic Trees 361
13.1 The ggtree Package . 361
13.2 Tree Import . 362
13.3 Basic trees . 363

13.3.1 Other tree geoms . 366
13.4 Tree annotation . 368

13.4.1 Internal node number . 368
13.4.2 Labeling clades . 369
13.4.3 Connecting taxa . 372

13.5 Advanced tree annotation . 374

6

13.6 Bonus! . 376
13.6.1 Many trees . 376
13.6.2 Plot tree with other data . 377
13.6.3 Overlay organism silouhettes . 377

References 379

Appendices 380

A Setup 380
A.1 Software . 380
A.2 Data . 381

B Further Resources 383
B.1 R resources . 383

B.1.1 Getting Help . 383
B.1.2 General R Resources . 383
B.1.3 dplyr resources . 383
B.1.4 ggplot2 resources . 384
B.1.5 Markdown / RMarkdown resources . 384

B.2 RNA-seq resources . 384

7

Preface

This book was written as a companion to a series of courses I taught at the University of
Virginia introducing the essentials of biological data science with R:

1. UVA Biomedical Sciences Graduate Program BIMS8382: bims8382.github.io.
2. UVA Health Sciences Library Biological Data Science Workshops: stephen-

turner.github.io/workshops.
3. UVA Translational Health Research Institute of Virginia (THRIV) Scholars program

Biological Data Science course: thriv.github.io.

While this book was written with the accompanying live instruction in mind, this book can be
used as a self-contained self study guide for quickly learning the essentials need to get started
with R. The BDSR book and accompanying course introduces methods, tools, and software for
reproducibly managing, manipulating, analyzing, and visualizing large-scale biological data
using the R statistical computing environment. This book also covers essential statistical
analysis, and advanced topics including survival analysis, predictive modeling, forecasting,
and text mining.

This is not a “Tool X” or “Software Y” book. I want you to take away from this
book and accompanying course the ability to use an extremely powerful scientific computing
environment (R) to do many of the things that you’ll do across study designs and disciplines
– managing, manipulating, visualizing, and analyzing large, sometimes high-dimensional data.
Regardless of your specific discipline you’ll need the same computational know-how and data
literacy to do the same kinds of basic tasks in each. This book might show you how to use
specific tools here and there (e.g., DESeq2 for RNA-seq analysis (Love, Huber, and Anders
2014), ggtree for drawing phylogenetic trees (Yu et al. 2017), etc.), but these are not important
– you probably won’t be using the same specific software or methods 10 years from now, but
you’ll still use the same underlying data and computational foundation. That is the point of
this series – to arm you with a basic foundation, and more importantly, to enable you to figure
out how to use this tool or that tool on your own, when you need to.

This is not a statistics book. There is a short chapter on essential statistics using R in
Chapter 8 but this short chapter offers neither a comprehensive background on underlying
theory nor in-depth coverage of implementation strategies using R. Some general knowledge of
statistics and study design is helpful, but isn’t required for going through this book or taking
the accompanying course.

8

https://bims8382.github.io/
https://stephenturner.github.io/workshops/
https://stephenturner.github.io/workshops/
https://thriv.github.io/

There are no prerequisites to this book or the accompanying course. However, each chapter
involves lots of hands-on practice coding, and you’ll need to download and install required
softwar and download required data. See the setup instructions in Appendix A.

9

Acknowledgements

This book is partially adapted from material developed from the courses I taught above, some
co-taught with VP (Pete) Nagraj, from 2015-2019. The material for this course was adapted
from and/or inspired by Jenny Bryan’s STAT545 course at UBC (Bryan 2019), Software
Carpentry (Wilson 2014) and Data Carpentry (Teal et al. 2015) courses, David Robinson’s
Variance Explained blog (Robinson 2015), the ggtree vignettes (Yu 2022) Tidy Text Mining
with R (Silge and Robinson 2017), and likely many others.

10

Part I

Core Curriculum

11

1 Basics

This chapter introduces the R environment and some of the most basic functionality aspects of
R that are used through the remainder of the book. This section assumes little to no experience
with statistical computing with R. This chapter introduces the very basic functionality in R,
including variables, functions, and importing/inspecting data frames (tibbles).

1.1 RStudio

Let’s start by learning about RStudio. R is the underlying statistical computing environment.
RStudio is a graphical integrated development environment (IDE) that makes using R much
easier.

• Options: First, let’s change a few options. We’ll only have to do this once. Under
Tools… Global Options…:

– Under General: Uncheck “Restore most recently opened project at startup”
– Under General: Uncheck “Restore .RData into workspace at startup”
– Under General: Set “Save workspace to .RData on exit:” to Never.
– Under General: Set “Save workspace to .RData on exit:” to Never.
– Under R Markdown: Uncheck “Show output inline for all R Markdown documents”

• Projects: first, start a new project in a new folder somewhere easy to remember. When
we start reading in data it’ll be important that the code and the data are in the same
place. Creating a project creates an Rproj file that opens R running in that folder. This
way, when you want to read in dataset whatever.txt, you just tell it the filename rather
than a full path. This is critical for reproducibility, and we’ll talk about that more later.

• Code that you type into the console is code that R executes. From here forward we will
use the editor window to write a script that we can save to a file and run it again whenever
we want to. We usually give it a .R extension, but it’s just a plain text file. If you want
to send commands from your editor to the console, use CMD+Enter (Ctrl+Enter on
Windows).

• Anything after a # sign is a comment. Use them liberally to comment your code.

12

1.2 Basic operations

R can be used as a glorified calculator. Try typing this in directly into the console. Make sure
you’re typing into into the editor, not the console, and save your script. Use the run button,
or press CMD+Enter (Ctrl+Enter on Windows).

2+2

[1] 4

5*4

[1] 20

2^3

[1] 8

R Knows order of operations and scientific notation.

2+3*4/(5+3)*15/2^2+3*4^2

[1] 55.6

5e4

[1] 50000

However, to do useful and interesting things, we need to assign values to objects. To create
objects, we need to give it a name followed by the assignment operator <- and the value we
want to give it:

weight_kg <- 55

<- is the assignment operator. Assigns values on the right to objects on the left, it is like an
arrow that points from the value to the object. Mostly similar to = but not always. Learn to

13

use <- as it is good programming practice. Using = in place of <- can lead to issues down the
line. The keyboard shortcut for inserting the <- operator is Alt-dash.

Objects can be given any name such as x, current_temperature, or subject_id. You want
your object names to be explicit and not too long. They cannot start with a number (2x is not
valid but x2 is). R is case sensitive (e.g., weight_kg is different from Weight_kg). There are
some names that cannot be used because they represent the names of fundamental functions
in R (e.g., if, else, for, see here for a complete list). In general, even if it’s allowed, it’s
best to not use other function names, which we’ll get into shortly (e.g., c, T, mean, data, df,
weights). In doubt check the help to see if the name is already in use. It’s also best to avoid
dots (.) within a variable name as in my.dataset. It is also recommended to use nouns for
variable names, and verbs for function names.

When assigning a value to an object, R does not print anything. You can force to print the
value by typing the name:

weight_kg

[1] 55

Now that R has weight_kg in memory, we can do arithmetic with it. For instance, we may
want to convert this weight in pounds (weight in pounds is 2.2 times the weight in kg).

2.2 * weight_kg

[1] 121

We can also change a variable’s value by assigning it a new one:

weight_kg <- 57.5
2.2 * weight_kg

[1] 127

This means that assigning a value to one variable does not change the values of other variables.
For example, let’s store the animal’s weight in pounds in a variable.

weight_lb <- 2.2 * weight_kg

and then change weight_kg to 100.

14

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

weight_kg <- 100

What do you think is the current content of the object weight_lb? 126.5 or 220?

You can see what objects (variables) are stored by viewing the Environment tab in Rstudio.
You can also use the ls() function. You can remove objects (variables) with the rm() function.
You can do this one at a time or remove several objects at once. You can also use the little
broom button in your environment pane to remove everything from your environment.

ls()
rm(weight_lb, weight_kg)
ls()
weight_lb # oops! you should get an error because weight_lb no longer exists!

Exercise 1

What are the values after each statement in the following?

mass <- 50 # mass?
age <- 30 # age?
mass <- mass * 2 # mass?
age <- age - 10 # age?
mass_index <- mass/age # massIndex?

1.3 Functions

R has built-in functions.

Notice that this is a comment.
Anything behind a # is "commented out" and is not run.
sqrt(144)

[1] 12

log(1000)

[1] 6.91

Get help by typing a question mark in front of the function’s name, or help(functionname):

15

help(log)
?log

Note syntax highlighting when typing this into the editor. Also note how we pass arguments
to functions. The base= part inside the parentheses is called an argument, and most functions
use arguments. Arguments modify the behavior of the function. Functions some input (e.g.,
some data, an object) and other options to change what the function will return, or how to
treat the data provided. Finally, see how you can next one function inside of another (here
taking the square root of the log-base-10 of 1000).

log(1000)

[1] 6.91

log(1000, base=10)

[1] 3

log(1000, 10)

[1] 3

sqrt(log(1000, base=10))

[1] 1.73

Exercise 2

See ?abs and calculate the square root of the log-base-10 of the absolute value of
-4*(2550-50). Answer should be 2.

16

1.4 Tibbles (data frames)

There are lots of different basic data structures in R. If you take any kind of longer introduction
to R you’ll probably learn about arrays, lists, matrices, etc. We are going to skip straight to
the data structure you’ll probably use most – the tibble (also known as the data frame). We
use tibbles to store heterogeneous tabular data in R: tabular, meaning that individuals or
observations are typically represented in rows, while variables or features are represented as
columns; heterogeneous, meaning that columns/features/variables can be different classes (on
variable, e.g. age, can be numeric, while another, e.g., cause of death, can be text).

We’ll learn more about tibbles in Chapter 2.

17

2 Tibbles

There are lots of different basic data structures in R. If you take any kind of longer introduc-
tion to R you’ll probably learn about arrays, lists, matrices, etc. Let’s skip straight to the
data structure you’ll probably use most – the data frame. We use data frames to store het-
erogeneous tabular data in R: tabular, meaning that individuals or observations are typically
represented in rows, while variables or features are represented as columns; heterogeneous,
meaning that columns/features/variables can be different classes (on variable, e.g. age, can be
numeric, while another, e.g., cause of death, can be text).

This chapter assumes a basic familiarity with R (see Chapter 1).

Recommended reading: Review the Introduction (10.1) and Tibbles vs. data.frame (10.3)
sections of the R for Data Science book. We will initially be using the read_* functions
from the readr package. These functions load data into a tibble instead of R’s traditional
data.frame. Tibbles are data frames, but they tweak some older behaviors to make life a little
easier. These sections explain the few key small differences between traditional data.frames
and tibbles.

2.1 Our data

The data we’re going to look at is cleaned up version of a gene expression dataset from Brauer
et al. Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in
Yeast (2008) Mol Biol Cell 19:352-367. This data is from a gene expression microarray, and in
this paper the authors are examining the relationship between growth rate and gene expression
in yeast cultures limited by one of six different nutrients (glucose, leucine, ammonium, sulfate,
phosphate, uracil). If you give yeast a rich media loaded with nutrients except restrict the
supply of a single nutrient, you can control the growth rate to any rate you choose. By starving
yeast of specific nutrients you can find genes that:

1. Raise or lower their expression in response to growth rate. Growth-rate de-
pendent expression patterns can tell us a lot about cell cycle control, and how the cell
responds to stress. The authors found that expression of >25% of all yeast genes is
linearly correlated with growth rate, independent of the limiting nutrient. They also
found that the subset of negatively growth-correlated genes is enriched for peroxisomal
functions, and positively correlated genes mainly encode ribosomal functions.

18

http://r4ds.had.co.nz/tibbles.html#introduction-4
http://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame
http://r4ds.had.co.nz/tibbles.html
http://readr.tidyverse.org/
http://www.ncbi.nlm.nih.gov/pubmed/17959824
http://www.ncbi.nlm.nih.gov/pubmed/17959824
http://www.ncbi.nlm.nih.gov/pubmed/17959824

2. Respond differently when different nutrients are being limited. If you see
particular genes that respond very differently when a nutrient is sharply restricted, these
genes might be involved in the transport or metabolism of that specific nutrient.

You can download the cleaned up version of the data here. The file is called brauer2007_tidy.csv.
Later on we’ll actually start with the original raw data (minimally processed) and manipulate
it so that we can make it more amenable for analysis.

2.2 Reading in data

2.2.1 dplyr and readr

There are some built-in functions for reading in data in text files. These functions are read-
dot-something – for example, read.csv() reads in comma-delimited text data; read.delim()
reads in tab-delimited text, etc. We’re going to read in data a little bit differently here using
the readr package. When you load the readr package, you’ll have access to very similar looking
functions, named read-underscore-something – e.g., read_csv(). You have to have the readr
package installed to access these functions. Compared to the base functions, they’re much
faster, they’re good at guessing the types of data in the columns, they don’t do some of the
other silly things that the base functions do. We’re going to use another package later on
called dplyr, and if you have the dplyr package loaded as well, and you read in the data with
readr, the data will display nicely.

First let’s load those packages.

library(readr)
library(dplyr)

If you see a warning that looks like this: Error in library(packageName) : there is no
package called 'packageName', then you don’t have the package installed correctly. See
the setup chapter (Appendix A).

2.2.2 read_csv()

Now, let’s actually load the data. You can get help for the import function with ?read_csv.
When we load data we assign it to a variable just like any other, and we can choose a name for
that data. Since we’re going to be referring to this data a lot, let’s give it a short easy name
to type. I’m going to call it ydat. Once we’ve loaded it we can type the name of the object
itself (ydat) to see it printed to the screen.

19

data/data.zip
data/brauer2007_tidy.csv
http://readr.tidyverse.org/
https://cran.r-project.org/web/packages/dplyr/index.html

ydat <- read_csv(file="data/brauer2007_tidy.csv")
ydat

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

Take a look at that output. The nice thing about loading dplyr and reading in data with
readr is that data frames are displayed in a much more friendly way. This dataset has nearly
200,000 rows and 7 columns. When you import data this way and try to display the object in
the console, instead of trying to display all 200,000 rows, you’ll only see about 10 by default.
Also, if you have so many columns that the data would wrap off the edge of your screen, those
columns will not be displayed, but you’ll see at the bottom of the output which, if any, columns
were hidden from view. If you want to see the whole dataset, there are two ways to do this.
First, you can click on the name of the data.frame in the Environment panel in RStudio. Or
you could use the View() function (with a capital V).

View(ydat)

2.3 Inspecting data.frame objects

2.3.1 Built-in functions

There are several built-in functions that are useful for working with data frames.

• Content:

– head(): shows the first few rows
– tail(): shows the last few rows

20

• Size:

– dim(): returns a 2-element vector with the number of rows in the first element, and
the number of columns as the second element (the dimensions of the object)

– nrow(): returns the number of rows
– ncol(): returns the number of columns

• Summary:

– colnames() (or just names()): returns the column names
– str(): structure of the object and information about the class, length and content

of each column
– summary(): works differently depending on what kind of object you pass to it.

Passing a data frame to the summary() function prints out useful summary statistics
about numeric column (min, max, median, mean, etc.)

head(ydat)

A tibble: 6 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process unk~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and peptid~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylation* RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process unk~ mole~

tail(ydat)

A tibble: 6 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 DOA1 YKL213C Uracil 0.3 0.14 ubiquitin-dependent pr~ mole~
2 KRE1 YNL322C Uracil 0.3 0.28 cell wall organization~ stru~
3 MTL1 YGR023W Uracil 0.3 0.27 cell wall organization~ mole~
4 KRE9 YJL174W Uracil 0.3 0.43 cell wall organization~ mole~
5 UTH1 YKR042W Uracil 0.3 0.19 mitochondrion organiza~ mole~
6 <NA> YOL111C Uracil 0.3 0.04 biological process unk~ mole~

dim(ydat)

21

[1] 198430 7

names(ydat)

[1] "symbol" "systematic_name" "nutrient" "rate"
[5] "expression" "bp" "mf"

str(ydat)

spc_tbl_ [198,430 x 7] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ symbol : chr [1:198430] "SFB2" NA "QRI7" "CFT2" ...
$ systematic_name: chr [1:198430] "YNL049C" "YNL095C" "YDL104C" "YLR115W" ...
$ nutrient : chr [1:198430] "Glucose" "Glucose" "Glucose" "Glucose" ...
$ rate : num [1:198430] 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 ...
$ expression : num [1:198430] -0.24 0.28 -0.02 -0.33 0.05 -0.69 -0.55 -0.75 -0.24 -0.16 ...
$ bp : chr [1:198430] "ER to Golgi transport" "biological process unknown" "proteolysis and peptidolysis" "mRNA polyadenylylation*" ...
$ mf : chr [1:198430] "molecular function unknown" "molecular function unknown" "metalloendopeptidase activity" "RNA binding" ...
- attr(*, "spec")=
.. cols(
.. symbol = col_character(),
.. systematic_name = col_character(),
.. nutrient = col_character(),
.. rate = col_double(),
.. expression = col_double(),
.. bp = col_character(),
.. mf = col_character()
..)
- attr(*, "problems")=<externalptr>

summary(ydat)

symbol systematic_name nutrient rate
Length:198430 Length:198430 Length:198430 Min. :0.050
Class :character Class :character Class :character 1st Qu.:0.100
Mode :character Mode :character Mode :character Median :0.200

Mean :0.175
3rd Qu.:0.250
Max. :0.300

22

expression bp mf
Min. :-6.50 Length:198430 Length:198430
1st Qu.:-0.29 Class :character Class :character
Median : 0.00 Mode :character Mode :character
Mean : 0.00
3rd Qu.: 0.29
Max. : 6.64

2.3.2 Other packages

The glimpse() function is available once you load the dplyr library, and it’s like str() but
its display is a little bit better.

glimpse(ydat)

Rows: 198,430
Columns: 7
$ symbol <chr> "SFB2", NA, "QRI7", "CFT2", "SSO2", "PSP2", "RIB2", "V~
$ systematic_name <chr> "YNL049C", "YNL095C", "YDL104C", "YLR115W", "YMR183C",~
$ nutrient <chr> "Glucose", "Glucose", "Glucose", "Glucose", "Glucose",~
$ rate <dbl> 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, ~
$ expression <dbl> -0.24, 0.28, -0.02, -0.33, 0.05, -0.69, -0.55, -0.75, ~
$ bp <chr> "ER to Golgi transport", "biological process unknown",~
$ mf <chr> "molecular function unknown", "molecular function unkn~

The skimr package has a nice function, skim, that provides summary statistics the user can
skim quickly to understand your data. You can install it with install.packages("skimr")
if you don’t have it already.

library(skimr)
skim(ydat)

Table 2.1: Data summary

Name ydat
Number of rows 198430
Number of columns 7

Column type frequency:
character 5

23

numeric 2

Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
symbol 47250 0.76 2 9 0 4210 0
systematic_name 0 1.00 5 9 0 5536 0
nutrient 0 1.00 6 9 0 6 0
bp 7663 0.96 7 82 0 880 0
mf 7663 0.96 11 125 0 1085 0

Variable type: numeric

skim_variablen_missing complete_ratemean sd p0 p25 p50 p75 p100 hist
rate 0 1 0.18 0.09 0.05 0.10 0.2 0.25 0.30 �����
expression 0 1 0.00 0.67 -6.50 -0.29 0.0 0.29 6.64 �����

2.4 Accessing variables & subsetting data frames

We can access individual variables within a data frame using the $ operator, e.g.,
mydataframe$specificVariable. Let’s print out all the gene names in the data. Then let’s
calculate the average expression across all conditions, all genes (using the built-in mean()
function).

display all gene symbols
ydat$symbol

[1] "SFB2" NA "QRI7" "CFT2" "SSO2" "PSP2"
[7] "RIB2" "VMA13" "EDC3" "VPS5" NA "AMN1"
[13] "SCW11" "DSE2" "COX15" "SPE1" "MTF1" "KSS1"
[19] NA NA "YAP7" NA "YVC1" "CDC40"
[25] NA "RMD1" "PCL6" "AI4" "GGC1" "SUL1"
[31] "RAD57" NA "PER1" "YHC3" "SGE1" "HNM1"
[37] "SWI1" "NAM8" NA "BGL2" "ACT1" NA
[43] "SFL1" "OYE3" "MMP1" "MHT1" "SUL2" "IPP1"

24

[49] "CWP1" "SNF11" "PEX25" "ELO1" NA "CDC13"
[55] "FKH1" "SWD1" NA "HOF1" "HOC1" "BNI5"
[61] "CSN12" "PGS1" "MLP2" "HRP1" NA "SEC39"
[67] "ECM31" NA NA "ADE4" "ABC1" "DLD2"
[73] "PHA2" NA "HAP3" "MRPL23" NA NA
[79] "MRPL16" NA NA NA NA "AI3"
[85] "COX1" NA "VAR1" "COX3" "COX2" "AI5_BETA"
[91] "AI2" NA NA "GPI18" "COS9" NA
[97] NA "PRP46" "XDJ1" "SLG1" "MAM3" "AEP1"
[103] "UGO1" NA "RSC2" "YAP1801" "ZPR1" "BCD1"
[109] "UBP10" "SLD3" "RLF2" "LRO1" NA "ITR2"
[115] "ABP140" "STT3" "PTC2" "STE20" "HRD3" "CWH43"
[121] "ASK10" "MPE1" "SWC3" "TSA1" "ADE17" "GFD2"
[127] "PXR1" NA "BUD14" "AUS1" "NHX1" "NTE1"
[133] NA "KIN3" "BUD4" "SLI15" "PMT4" "AVT5"
[139] "CHS2" "GPI13" "KAP95" "EFT2" "EFT1" "GAS1"
[145] "CYK3" "COQ2" "PSD1" NA "PAC1" "SUR7"
[151] "RAX1" "DFM1" "RBD2" NA "YIP4" "SRB2"
[157] "HOL1" "MEP3" NA "FEN2" NA "RFT1"
[163] NA "MCK1" "GPI10" "APT1" NA NA
[169] "CPT1" "ERV29" "SFK1" NA "SEC20" "TIR4"
[175] NA NA "ARC35" "SOL1" "BIO2" "ASC1"
[181] "RBG1" "PTC4" NA "OXA1" "SIT4" "PUB1"
[187] "FPR4" "FUN12" "DPH2" "DPS1" "DLD1" "ASN2"
[193] "TRM9" "DED81" "SRM1" "SAM50" "POP2" "FAA4"
[199] NA "CEM1"
[reached getOption("max.print") -- omitted 198230 entries]

#mean expression
mean(ydat$expression)

[1] 0.00337

Now that’s not too interesting. This is the average gene expression across all genes, across all
conditions. The data is actually scaled/centered around zero:

25

0

10000

20000

−4 0 4
Expression

co
un

t
Histogram of expression values

We might be interested in the average expression of genes with a particular biological function,
and how that changes over different growth rates restricted by particular nutrients. This is
the kind of thing we’re going to do in the next section.

Exercise 1

1. What’s the standard deviation expression (hint: get help on the sd function with
?sd).

2. What’s the range of rate represented in the data? (hint: range()).

2.5 BONUS: Preview to advanced manipulation

What if we wanted show the mean expression, standard deviation, and correlation between
growth rate and expression, separately for each limiting nutrient, separately for each gene, for
all genes involved in the leucine biosynthesis pathway?

ydat |>
filter(bp=="leucine biosynthesis") |>
group_by(nutrient, symbol) |>
summarize(mean=mean(expression), sd=sd(expression), r=cor(rate, expression))

26

nutrient symbol mean sd r
Ammonia LEU1 -0.82 0.39 0.66
Ammonia LEU2 -0.54 0.38 -0.19
Ammonia LEU4 -0.37 0.56 -0.67
Ammonia LEU9 -1.01 0.64 0.87
Glucose LEU1 -0.55 0.41 0.98
Glucose LEU2 -0.39 0.33 0.90
Glucose LEU4 1.09 1.01 -0.97
Glucose LEU9 -0.17 0.35 0.35
Leucine LEU1 2.70 1.08 -0.95
Leucine LEU2 0.28 1.16 -0.97
Leucine LEU4 0.80 1.06 -0.97
Leucine LEU9 0.39 0.18 -0.77
Phosphate LEU1 -0.43 0.27 0.95
Phosphate LEU2 -0.26 0.19 0.70
Phosphate LEU4 -0.99 0.11 0.24
Phosphate LEU9 -1.12 0.53 0.90
Sulfate LEU1 -1.17 0.34 0.98
Sulfate LEU2 -0.96 0.30 0.57
Sulfate LEU4 -0.24 0.43 -0.60
Sulfate LEU9 -1.24 0.55 0.99
Uracil LEU1 -0.74 0.73 0.89
Uracil LEU2 0.18 0.13 -0.07
Uracil LEU4 -0.65 0.44 0.77
Uracil LEU9 -1.02 0.91 0.94

Neat eh? We’ll learn how to do that in the advanced manipulation with dplyr section (Chap-
ter 3).

27

3 Data Manipulation with dplyr

Data analysis involves a large amount of janitor work – munging and cleaning data to facilitate
downstream data analysis. This chapter demonstrates techniques for advanced data manipu-
lation and analysis with the split-apply-combine strategy. We will use the dplyr package in R
to effectively manipulate and conditionally compute summary statistics over subsets of a “big”
dataset containing many observations.

This chapter assumes a basic familiarity with R (Chapter 1) and data frames
(Chapter 2).

Recommended reading: Review the Introduction (10.1) and Tibbles vs. data.frame (10.3)
sections of the R for Data Science book. We will initially be using the read_* functions
from the readr package. These functions load data into a tibble instead of R’s traditional
data.frame. Tibbles are data frames, but they tweak some older behaviors to make life a little
easier. These sections explain the few key small differences between traditional data.frames
and tibbles.

3.1 Review

3.1.1 Our data

We’re going to use the yeast gene expression dataset described on the data frames chapter
in Chapter 2. This is a cleaned up version of a gene expression dataset from Brauer et
al. Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in
Yeast (2008) Mol Biol Cell 19:352-367. This data is from a gene expression microarray, and in
this paper the authors are examining the relationship between growth rate and gene expression
in yeast cultures limited by one of six different nutrients (glucose, leucine, ammonium, sulfate,
phosphate, uracil). If you give yeast a rich media loaded with nutrients except restrict the
supply of a single nutrient, you can control the growth rate to any rate you choose. By starving
yeast of specific nutrients you can find genes that:

1. Raise or lower their expression in response to growth rate. Growth-rate de-
pendent expression patterns can tell us a lot about cell cycle control, and how the cell
responds to stress. The authors found that expression of >25% of all yeast genes is
linearly correlated with growth rate, independent of the limiting nutrient. They also

28

http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
http://r4ds.had.co.nz/tibbles.html#introduction-4
http://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame
http://r4ds.had.co.nz/tibbles.html
http://readr.tidyverse.org/
http://www.ncbi.nlm.nih.gov/pubmed/17959824
http://www.ncbi.nlm.nih.gov/pubmed/17959824
http://www.ncbi.nlm.nih.gov/pubmed/17959824

found that the subset of negatively growth-correlated genes is enriched for peroxisomal
functions, and positively correlated genes mainly encode ribosomal functions.

2. Respond differently when different nutrients are being limited. If you see
particular genes that respond very differently when a nutrient is sharply restricted, these
genes might be involved in the transport or metabolism of that specific nutrient.

You can download the cleaned up version of the data here. The file is called brauer2007_tidy.csv.
Later on we’ll actually start with the original raw data (minimally processed) and manipulate
it so that we can make it more amenable for analysis.

3.1.2 Reading in data

We need to load both the dplyr and readr packages for efficiently reading in and displaying
this data. We’re also going to use many other functions from the dplyr package. Make sure
you have these packages installed as described on the setup chapter (Appendix A).

Load packages
library(readr)
library(dplyr)

Read in data
ydat <- read_csv(file="data/brauer2007_tidy.csv")

Display the data
ydat

Optionally, bring up the data in a viewer window
View(ydat)

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~

29

data/data.zip
data/brauer2007_tidy.csv

10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

3.2 The dplyr package

The dplyr package is a relatively new R package that makes data manipulation fast and easy. It
imports functionality from another package called magrittr that allows you to chain commands
together into a pipeline that will completely change the way you write R code such that you’re
writing code the way you’re thinking about the problem.

When you read in data with the readr package (read_csv()) and you had the dplyr package
loaded already, the data frame takes on this “special” class of data frames called a tbl (pro-
nounced “tibble”), which you can see with class(ydat). If you have other “regular” data
frames in your workspace, the as_tibble() function will convert it into the special dplyr tbl
that displays nicely (e.g.: iris <- as_tibble(iris)). You don’t have to turn all your data
frame objects into tibbles, but it does make working with large datasets a bit easier.

You can read more about tibbles in Tibbles chapter in R for Data Science or in the tibbles
vignette. They keep most of the features of data frames, and drop the features that used to
be convenient but are now frustrating (i.e. converting character vectors to factors). You can
read more about the differences between data frames and tibbles in this section of the tibbles
vignette, but the major convenience for us concerns printing (aka displaying) a tibble to the
screen. When you print (i.e., display) a tibble, it only shows the first 10 rows and all the
columns that fit on one screen. It also prints an abbreviated description of the column type.
You can control the default appearance with options:

• options(tibble.print_max = n, tibble.print_min = m): if there are more than n
rows, print only the first m rows. Use options(tibble.print_max = Inf) to always
show all rows.

• options(tibble.width = Inf) will always print all columns, regardless of the width of
the screen.

3.3 dplyr verbs

The dplyr package gives you a handful of useful verbs for managing data. On their own
they don’t do anything that base R can’t do. Here are some of the single-table verbs we’ll
be working with in this chapter (single-table meaning that they only work on a single table
– contrast that to two-table verbs used for joining data together, which we’ll cover in a later
chapter).

1. filter()

30

https://github.com/hadley/dplyr
http://r4ds.had.co.nz/tibbles.html
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html#tibbles-vs-data-frames
https://cran.r-project.org/web/packages/tibble/vignettes/tibble.html#tibbles-vs-data-frames

2. select()
3. mutate()
4. arrange()
5. summarize()
6. group_by()

They all take a data frame or tibble as their input for the first argument, and they all return
a data frame or tibble as output.

3.3.1 filter()

If you want to filter rows of the data where some condition is true, use the filter() func-
tion.

1. The first argument is the data frame you want to filter, e.g. filter(mydata,
2. The second argument is a condition you must satisfy, e.g. filter(ydat, symbol ==

"LEU1"). If you want to satisfy all of multiple conditions, you can use the “and” operator,
&. The “or” operator | (the pipe character, usually shift-backslash) will return a subset
that meet any of the conditions.

• ==: Equal to
• !=: Not equal to
• >, >=: Greater than, greater than or equal to
• <, <=: Less than, less than or equal to

Let’s try it out. For this to work you have to have already loaded the dplyr package. Let’s
take a look at LEU1, a gene involved in leucine synthesis.

First, make sure you've loaded the dplyr package
library(dplyr)

Look at a single gene involved in leucine synthesis pathway
filter(ydat, symbol == "LEU1")

A tibble: 36 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isop~
2 LEU1 YGL009C Glucose 0.1 -0.77 leucine biosynthesis 3-isop~
3 LEU1 YGL009C Glucose 0.15 -0.67 leucine biosynthesis 3-isop~
4 LEU1 YGL009C Glucose 0.2 -0.59 leucine biosynthesis 3-isop~
5 LEU1 YGL009C Glucose 0.25 -0.2 leucine biosynthesis 3-isop~

31

http://www.yeastgenome.org/locus/Leu1/overview

6 LEU1 YGL009C Glucose 0.3 0.03 leucine biosynthesis 3-isop~
7 LEU1 YGL009C Ammonia 0.05 -0.76 leucine biosynthesis 3-isop~
8 LEU1 YGL009C Ammonia 0.1 -1.17 leucine biosynthesis 3-isop~
9 LEU1 YGL009C Ammonia 0.15 -1.2 leucine biosynthesis 3-isop~
10 LEU1 YGL009C Ammonia 0.2 -1.02 leucine biosynthesis 3-isop~
i 26 more rows

Optionally, bring that result up in a View window
View(filter(ydat, symbol == "LEU1"))

Look at multiple genes
filter(ydat, symbol=="LEU1" | symbol=="ADH2")

A tibble: 72 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isop~
2 ADH2 YMR303C Glucose 0.05 6.28 fermentation* alcoho~
3 LEU1 YGL009C Glucose 0.1 -0.77 leucine biosynthesis 3-isop~
4 ADH2 YMR303C Glucose 0.1 5.81 fermentation* alcoho~
5 LEU1 YGL009C Glucose 0.15 -0.67 leucine biosynthesis 3-isop~
6 ADH2 YMR303C Glucose 0.15 5.64 fermentation* alcoho~
7 LEU1 YGL009C Glucose 0.2 -0.59 leucine biosynthesis 3-isop~
8 ADH2 YMR303C Glucose 0.2 5.1 fermentation* alcoho~
9 LEU1 YGL009C Glucose 0.25 -0.2 leucine biosynthesis 3-isop~
10 ADH2 YMR303C Glucose 0.25 1.89 fermentation* alcoho~
i 62 more rows

Look at LEU1 expression at a low growth rate due to nutrient depletion
Notice how LEU1 is highly upregulated when leucine is depleted!
filter(ydat, symbol=="LEU1" & rate==.05)

A tibble: 6 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isop~
2 LEU1 YGL009C Ammonia 0.05 -0.76 leucine biosynthesis 3-isop~
3 LEU1 YGL009C Phosphate 0.05 -0.81 leucine biosynthesis 3-isop~
4 LEU1 YGL009C Sulfate 0.05 -1.57 leucine biosynthesis 3-isop~
5 LEU1 YGL009C Leucine 0.05 3.84 leucine biosynthesis 3-isop~
6 LEU1 YGL009C Uracil 0.05 -2.07 leucine biosynthesis 3-isop~

32

But expression goes back down when the growth/nutrient restriction is relaxed
filter(ydat, symbol=="LEU1" & rate==.3)

A tibble: 6 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 LEU1 YGL009C Glucose 0.3 0.03 leucine biosynthesis 3-isop~
2 LEU1 YGL009C Ammonia 0.3 -0.22 leucine biosynthesis 3-isop~
3 LEU1 YGL009C Phosphate 0.3 -0.07 leucine biosynthesis 3-isop~
4 LEU1 YGL009C Sulfate 0.3 -0.76 leucine biosynthesis 3-isop~
5 LEU1 YGL009C Leucine 0.3 0.87 leucine biosynthesis 3-isop~
6 LEU1 YGL009C Uracil 0.3 -0.16 leucine biosynthesis 3-isop~

Show only stats for LEU1 and Leucine depletion.
LEU1 expression starts off high and drops
filter(ydat, symbol=="LEU1" & nutrient=="Leucine")

A tibble: 6 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 LEU1 YGL009C Leucine 0.05 3.84 leucine biosynthesis 3-isopr~
2 LEU1 YGL009C Leucine 0.1 3.36 leucine biosynthesis 3-isopr~
3 LEU1 YGL009C Leucine 0.15 3.24 leucine biosynthesis 3-isopr~
4 LEU1 YGL009C Leucine 0.2 2.84 leucine biosynthesis 3-isopr~
5 LEU1 YGL009C Leucine 0.25 2.04 leucine biosynthesis 3-isopr~
6 LEU1 YGL009C Leucine 0.3 0.87 leucine biosynthesis 3-isopr~

What about LEU1 expression with other nutrients being depleted?
filter(ydat, symbol=="LEU1" & nutrient=="Glucose")

A tibble: 6 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 LEU1 YGL009C Glucose 0.05 -1.12 leucine biosynthesis 3-isopr~
2 LEU1 YGL009C Glucose 0.1 -0.77 leucine biosynthesis 3-isopr~
3 LEU1 YGL009C Glucose 0.15 -0.67 leucine biosynthesis 3-isopr~
4 LEU1 YGL009C Glucose 0.2 -0.59 leucine biosynthesis 3-isopr~
5 LEU1 YGL009C Glucose 0.25 -0.2 leucine biosynthesis 3-isopr~
6 LEU1 YGL009C Glucose 0.3 0.03 leucine biosynthesis 3-isopr~

33

Let’s look at this graphically. Don’t worry about what these commands are doing just yet -
we’ll cover that later on when we talk about ggplot2. Here’s I’m taking the filtered dataset
containing just expression estimates for LEU1 where I have 36 rows (one for each of 6 nutrients
× 6 growth rates), and I’m piping that dataset to the plotting function, where I’m plotting
rate on the x-axis, expression on the y-axis, mapping the value of nutrient to the color, and
using a line plot to display the data.

library(ggplot2)
filter(ydat, symbol=="LEU1") |>
ggplot(aes(rate, expression, colour=nutrient)) + geom_line(lwd=1.5)

−2

0

2

4

0.1 0.2 0.3
rate

ex
pr

es
si

on

nutrient
Ammonia
Glucose
Leucine
Phosphate
Sulfate
Uracil

Look closely at that! LEU1 is highly expressed when starved of leucine because the cell has
to synthesize its own! And as the amount of leucine in the environment (the growth rate)
increases, the cell can worry less about synthesizing leucine, so LEU1 expression goes back
down. Consequently the cell can devote more energy into other functions, and we see other
genes’ expression very slightly raising.

Exercise 1

1. Display the data where the gene ontology biological process (the bp variable) is
“leucine biosynthesis” (case-sensitive) and the limiting nutrient was Leucine. (An-
swer should return a 24-by-7 data frame – 4 genes × 6 growth rates).

2. Gene/rate combinations had high expression (in the top 1% of expressed genes)?

34

Hint: see ?quantile and try quantile(ydat$expression, probs=.99) to see the
expression value which is higher than 99% of all the data, then filter() based
on that. Try wrapping your answer with a View() function so you can see the
whole thing. What does it look like those genes are doing? Answer should return
a 1971-by-7 data frame.

3.3.1.1 Aside: Writing Data to File

What we’ve done up to this point is read in data from a file (read_csv(...)), and assigning
that to an object in our workspace (ydat <- ...). When we run operations like filter() on
our data, consider two things:

1. The ydat object in our workspace is not being modified directly. That is, we can
filter(ydat, ...), and a result is returned to the screen, but ydat remains the same.
This effect is similar to what we demonstrated in our first session.

Assign the value '50' to the weight object.
weight <- 50

Print out weight to the screen (50)
weight

What's the value of weight plus 10?
weight + 10

Weight is still 50
weight

Weight is only modified if we *reassign* weight to the modified value
weight <- weight+10
Weight is now 60
weight

2. More importantly, the data file on disk (data/brauer2007_tidy.csv) is never modified.
No matter what we do to ydat, the file is never modified. If we want to save the result
of an operation to a file on disk, we can assign the result of an operation to an object,
and write_csv that object to disk. See the help for ?write_csv (note, write_csv()
with an underscore is part of the readr package – not to be confused with the built-in
write.csv() function).

35

What's the result of this filter operation?
filter(ydat, nutrient=="Leucine" & bp=="leucine biosynthesis")

Assign the result to a new object
leudat <- filter(ydat, nutrient=="Leucine" & bp=="leucine biosynthesis")

Write that out to disk
write_csv(leudat, "leucinedata.csv")

Note that this is different than saving your entire workspace to an Rdata file, which would
contain all the objects we’ve created (weight, ydat, leudat, etc).

3.3.2 select()

The filter() function allows you to return only certain rows matching a condition. The
select() function returns only certain columns. The first argument is the data, and subse-
quent arguments are the columns you want.

Select just the symbol and systematic_name
select(ydat, symbol, systematic_name)

A tibble: 198,430 x 2
symbol systematic_name
<chr> <chr>

1 SFB2 YNL049C
2 <NA> YNL095C
3 QRI7 YDL104C
4 CFT2 YLR115W
5 SSO2 YMR183C
6 PSP2 YML017W
7 RIB2 YOL066C
8 VMA13 YPR036W
9 EDC3 YEL015W
10 VPS5 YOR069W
i 198,420 more rows

Alternatively, just remove columns. Remove the bp and mf columns.
select(ydat, -bp, -mf)

36

A tibble: 198,430 x 5
symbol systematic_name nutrient rate expression
<chr> <chr> <chr> <dbl> <dbl>

1 SFB2 YNL049C Glucose 0.05 -0.24
2 <NA> YNL095C Glucose 0.05 0.28
3 QRI7 YDL104C Glucose 0.05 -0.02
4 CFT2 YLR115W Glucose 0.05 -0.33
5 SSO2 YMR183C Glucose 0.05 0.05
6 PSP2 YML017W Glucose 0.05 -0.69
7 RIB2 YOL066C Glucose 0.05 -0.55
8 VMA13 YPR036W Glucose 0.05 -0.75
9 EDC3 YEL015W Glucose 0.05 -0.24
10 VPS5 YOR069W Glucose 0.05 -0.16
i 198,420 more rows

Notice that the original data doesn't change!
ydat

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

Notice above how the original data doesn’t change. We’re selecting out only certain columns
of interest and throwing away columns we don’t care about. If we wanted to keep this data,
we would need to reassign the result of the select() operation to a new object. Let’s make
a new object called nogo that does not contain the GO annotations. Notice again how the
original data is unchanged.

create a new dataset without the go annotations.
nogo <- select(ydat, -bp, -mf)

37

nogo

A tibble: 198,430 x 5
symbol systematic_name nutrient rate expression
<chr> <chr> <chr> <dbl> <dbl>

1 SFB2 YNL049C Glucose 0.05 -0.24
2 <NA> YNL095C Glucose 0.05 0.28
3 QRI7 YDL104C Glucose 0.05 -0.02
4 CFT2 YLR115W Glucose 0.05 -0.33
5 SSO2 YMR183C Glucose 0.05 0.05
6 PSP2 YML017W Glucose 0.05 -0.69
7 RIB2 YOL066C Glucose 0.05 -0.55
8 VMA13 YPR036W Glucose 0.05 -0.75
9 EDC3 YEL015W Glucose 0.05 -0.24
10 VPS5 YOR069W Glucose 0.05 -0.16
i 198,420 more rows

we could filter this new dataset
filter(nogo, symbol=="LEU1" & rate==.05)

A tibble: 6 x 5
symbol systematic_name nutrient rate expression
<chr> <chr> <chr> <dbl> <dbl>

1 LEU1 YGL009C Glucose 0.05 -1.12
2 LEU1 YGL009C Ammonia 0.05 -0.76
3 LEU1 YGL009C Phosphate 0.05 -0.81
4 LEU1 YGL009C Sulfate 0.05 -1.57
5 LEU1 YGL009C Leucine 0.05 3.84
6 LEU1 YGL009C Uracil 0.05 -2.07

Notice how the original data is unchanged - still have all 7 columns
ydat

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~

38

4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

3.3.3 mutate()

The mutate() function adds new columns to the data. Remember, it doesn’t actually modify
the data frame you’re operating on, and the result is transient unless you assign it to a new
object or reassign it back to itself (generally, not always a good practice).

The expression level reported here is the 𝑙𝑜𝑔2 of the sample signal divided by the signal in the
reference channel, where the reference RNA for all samples was taken from the glucose-limited
chemostat grown at a dilution rate of 0.25 ℎ−1. Let’s mutate this data to add a new variable
called “signal” that’s the actual raw signal ratio instead of the log-transformed signal.

mutate(nogo, signal=2^expression)

Mutate has a nice little feature too in that it’s “lazy.” You can mutate and add one variable,
then continue mutating to add more variables based on that variable. Let’s make another
column that’s the square root of the signal ratio.

mutate(nogo, signal=2^expression, sigsr=sqrt(signal))

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression signal sigsr
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 SFB2 YNL049C Glucose 0.05 -0.24 0.847 0.920
2 <NA> YNL095C Glucose 0.05 0.28 1.21 1.10
3 QRI7 YDL104C Glucose 0.05 -0.02 0.986 0.993
4 CFT2 YLR115W Glucose 0.05 -0.33 0.796 0.892
5 SSO2 YMR183C Glucose 0.05 0.05 1.04 1.02
6 PSP2 YML017W Glucose 0.05 -0.69 0.620 0.787
7 RIB2 YOL066C Glucose 0.05 -0.55 0.683 0.826
8 VMA13 YPR036W Glucose 0.05 -0.75 0.595 0.771
9 EDC3 YEL015W Glucose 0.05 -0.24 0.847 0.920
10 VPS5 YOR069W Glucose 0.05 -0.16 0.895 0.946
i 198,420 more rows

39

Again, don’t worry about the code here to make the plot – we’ll learn about this later. Why
do you think we log-transform the data prior to analysis?

library(tidyr)
mutate(nogo, signal=2^expression, sigsr=sqrt(signal)) |>
gather(unit, value, expression:sigsr) |>
ggplot(aes(value)) + geom_histogram(bins=100) + facet_wrap(~unit, scales="free")

expression signal sigsr

−4 0 4 0 25 50 75 100 0.0 2.5 5.0 7.5 10.0

0

20000

40000

0

50000

100000

150000

0

10000

20000

value

co
un

t

3.3.4 arrange()

The arrange() function does what it sounds like. It takes a data frame or tbl and arranges
(or sorts) by column(s) of interest. The first argument is the data, and subsequent arguments
are columns to sort on. Use the desc() function to arrange by descending.

arrange by gene symbol
arrange(ydat, symbol)

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 AAC1 YMR056C Glucose 0.05 1.5 aerobic respiration* ATP:AD~
2 AAC1 YMR056C Glucose 0.1 1.54 aerobic respiration* ATP:AD~
3 AAC1 YMR056C Glucose 0.15 1.16 aerobic respiration* ATP:AD~
4 AAC1 YMR056C Glucose 0.2 1.04 aerobic respiration* ATP:AD~
5 AAC1 YMR056C Glucose 0.25 0.84 aerobic respiration* ATP:AD~
6 AAC1 YMR056C Glucose 0.3 0.01 aerobic respiration* ATP:AD~
7 AAC1 YMR056C Ammonia 0.05 0.8 aerobic respiration* ATP:AD~

40

8 AAC1 YMR056C Ammonia 0.1 1.47 aerobic respiration* ATP:AD~
9 AAC1 YMR056C Ammonia 0.15 0.97 aerobic respiration* ATP:AD~
10 AAC1 YMR056C Ammonia 0.2 0.76 aerobic respiration* ATP:AD~
i 198,420 more rows

arrange by expression (default: increasing)
arrange(ydat, expression)

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SUL1 YBR294W Phosphate 0.05 -6.5 sulfate transport sulf~
2 SUL1 YBR294W Phosphate 0.1 -6.34 sulfate transport sulf~
3 ADH2 YMR303C Phosphate 0.1 -6.15 fermentation* alco~
4 ADH2 YMR303C Phosphate 0.3 -6.04 fermentation* alco~
5 ADH2 YMR303C Phosphate 0.25 -5.89 fermentation* alco~
6 SUL1 YBR294W Uracil 0.05 -5.55 sulfate transport sulf~
7 SFC1 YJR095W Phosphate 0.2 -5.52 fumarate transport* succ~
8 JEN1 YKL217W Phosphate 0.3 -5.44 lactate transport lact~
9 MHT1 YLL062C Phosphate 0.05 -5.36 sulfur amino acid me~ homo~
10 SFC1 YJR095W Phosphate 0.25 -5.35 fumarate transport* succ~
i 198,420 more rows

arrange by decreasing expression
arrange(ydat, desc(expression))

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 GAP1 YKR039W Ammonia 0.05 6.64 amino acid transport* L-pr~
2 DAL5 YJR152W Ammonia 0.05 6.64 allantoate transport alla~
3 GAP1 YKR039W Ammonia 0.1 6.64 amino acid transport* L-pr~
4 DAL5 YJR152W Ammonia 0.1 6.64 allantoate transport alla~
5 DAL5 YJR152W Ammonia 0.15 6.64 allantoate transport alla~
6 DAL5 YJR152W Ammonia 0.2 6.64 allantoate transport alla~
7 DAL5 YJR152W Ammonia 0.25 6.64 allantoate transport alla~
8 DAL5 YJR152W Ammonia 0.3 6.64 allantoate transport alla~
9 GIT1 YCR098C Phosphate 0.05 6.64 glycerophosphodieste~ glyc~
10 PHM6 YDR281C Phosphate 0.05 6.64 biological process u~ mole~
i 198,420 more rows

41

Exercise 2

1. First, re-run the command you used above to filter the data for genes involved
in the “leucine biosynthesis” biological process and where the limiting nutrient is
Leucine.

2. Wrap this entire filtered result with a call to arrange() where you’ll arrange the
result of #1 by the gene symbol.

3. Wrap this entire result in a View() statement so you can see the entire result.

3.3.5 summarize()

The summarize() function summarizes multiple values to a single value. On its own the
summarize() function doesn’t seem to be all that useful. The dplyr package provides a few
convenience functions called n() and n_distinct() that tell you the number of observations
or the number of distinct values of a particular variable.

Notice that summarize takes a data frame and returns a data frame. In this case it’s a 1x1
data frame with a single row and a single column. The name of the column, by default is
whatever the expression was used to summarize the data. This usually isn’t pretty, and if we
wanted to work with this resulting data frame later on, we’d want to name that returned value
something easier to deal with.

Get the mean expression for all genes
summarize(ydat, mean(expression))

A tibble: 1 x 1
`mean(expression)`

<dbl>
1 0.00337

Use a more friendly name, e.g., meanexp, or whatever you want to call it.
summarize(ydat, meanexp=mean(expression))

A tibble: 1 x 1
meanexp

<dbl>
1 0.00337

42

Measure the correlation between rate and expression
summarize(ydat, r=cor(rate, expression))

A tibble: 1 x 1
r

<dbl>
1 -0.0220

Get the number of observations
summarize(ydat, n())

A tibble: 1 x 1
`n()`
<int>

1 198430

The number of distinct gene symbols in the data
summarize(ydat, n_distinct(symbol))

A tibble: 1 x 1
`n_distinct(symbol)`

<int>
1 4211

3.3.6 group_by()

We saw that summarize() isn’t that useful on its own. Neither is group_by() All this does
is takes an existing data frame and coverts it into a grouped data frame where operations are
performed by group.

ydat

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~

43

3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

group_by(ydat, nutrient)

A tibble: 198,430 x 7
Groups: nutrient [6]

symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

group_by(ydat, nutrient, rate)

A tibble: 198,430 x 7
Groups: nutrient, rate [36]

symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~

44

7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

The real power comes in where group_by() and summarize() are used together. First, write
the group_by() statement. Then wrap the result of that with a call to summarize().

Get the mean expression for each gene
group_by(ydat, symbol)
summarize(group_by(ydat, symbol), meanexp=mean(expression))

A tibble: 4,211 x 2
symbol meanexp
<chr> <dbl>

1 AAC1 0.529
2 AAC3 -0.216
3 AAD10 0.438
4 AAD14 -0.0717
5 AAD16 0.242
6 AAD4 -0.792
7 AAD6 0.290
8 AAH1 0.0461
9 AAP1 -0.00361
10 AAP1' -0.421
i 4,201 more rows

Get the correlation between rate and expression for each nutrient
group_by(ydat, nutrient)
summarize(group_by(ydat, nutrient), r=cor(rate, expression))

A tibble: 6 x 2
nutrient r
<chr> <dbl>

1 Ammonia -0.0175
2 Glucose -0.0112
3 Leucine -0.0384
4 Phosphate -0.0194
5 Sulfate -0.0166
6 Uracil -0.0353

45

3.4 The pipe: |>

3.4.1 How |> works

This is where things get awesome. The dplyr package imports functionality from the magrittr
package that lets you pipe the output of one function to the input of another, so you can avoid
nesting functions. It looks like this: |>. You don’t have to load the magrittr package to use
it since dplyr imports its functionality when you load the dplyr package.

Here’s the simplest way to use it. Remember the tail() function. It expects a data frame
as input, and the next argument is the number of lines to print. These two commands are
identical:

tail(ydat, 5)

A tibble: 5 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 KRE1 YNL322C Uracil 0.3 0.28 cell wall organization~ stru~
2 MTL1 YGR023W Uracil 0.3 0.27 cell wall organization~ mole~
3 KRE9 YJL174W Uracil 0.3 0.43 cell wall organization~ mole~
4 UTH1 YKR042W Uracil 0.3 0.19 mitochondrion organiza~ mole~
5 <NA> YOL111C Uracil 0.3 0.04 biological process unk~ mole~

ydat |> tail(5)

A tibble: 5 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 KRE1 YNL322C Uracil 0.3 0.28 cell wall organization~ stru~
2 MTL1 YGR023W Uracil 0.3 0.27 cell wall organization~ mole~
3 KRE9 YJL174W Uracil 0.3 0.43 cell wall organization~ mole~
4 UTH1 YKR042W Uracil 0.3 0.19 mitochondrion organiza~ mole~
5 <NA> YOL111C Uracil 0.3 0.04 biological process unk~ mole~

Let’s use one of the dplyr verbs.

filter(ydat, nutrient=="Leucine")

46

https://github.com/smbache/magrittr

A tibble: 33,178 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Leucine 0.05 0.18 ER to Golgi transport mole~
2 <NA> YNL095C Leucine 0.05 0.16 biological process un~ mole~
3 QRI7 YDL104C Leucine 0.05 -0.3 proteolysis and pepti~ meta~
4 CFT2 YLR115W Leucine 0.05 -0.27 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Leucine 0.05 -0.59 vesicle fusion* t-SN~
6 PSP2 YML017W Leucine 0.05 -0.17 biological process un~ mole~
7 RIB2 YOL066C Leucine 0.05 -0.02 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Leucine 0.05 -0.11 vacuolar acidification hydr~
9 EDC3 YEL015W Leucine 0.05 0.12 deadenylylation-indep~ mole~
10 VPS5 YOR069W Leucine 0.05 -0.2 protein retention in ~ prot~
i 33,168 more rows

ydat |> filter(nutrient=="Leucine")

A tibble: 33,178 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Leucine 0.05 0.18 ER to Golgi transport mole~
2 <NA> YNL095C Leucine 0.05 0.16 biological process un~ mole~
3 QRI7 YDL104C Leucine 0.05 -0.3 proteolysis and pepti~ meta~
4 CFT2 YLR115W Leucine 0.05 -0.27 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Leucine 0.05 -0.59 vesicle fusion* t-SN~
6 PSP2 YML017W Leucine 0.05 -0.17 biological process un~ mole~
7 RIB2 YOL066C Leucine 0.05 -0.02 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Leucine 0.05 -0.11 vacuolar acidification hydr~
9 EDC3 YEL015W Leucine 0.05 0.12 deadenylylation-indep~ mole~
10 VPS5 YOR069W Leucine 0.05 -0.2 protein retention in ~ prot~
i 33,168 more rows

3.4.2 Nesting versus |>

So what?

Now, think about this for a minute. What if we wanted to get the correlation between the
growth rate and expression separately for each limiting nutrient only for genes in the leucine
biosynthesis pathway, and return a sorted list of those correlation coeffients rounded to two
digits? Mentally we would do something like this:

47

0. Take the ydat dataset
1. then filter() it for genes in the leucine biosynthesis pathway
2. then group_by() the limiting nutrient
3. then summarize() to get the correlation (cor()) between rate and expression
4. then mutate() to round the result of the above calculation to two significant digits
5. then arrange() by the rounded correlation coefficient above

But in code, it gets ugly. First, take the ydat dataset

ydat

then filter() it for genes in the leucine biosynthesis pathway

filter(ydat, bp=="leucine biosynthesis")

then group_by() the limiting nutrient

group_by(filter(ydat, bp=="leucine biosynthesis"), nutrient)

then summarize() to get the correlation (cor()) between rate and expression

summarize(group_by(filter(ydat, bp == "leucine biosynthesis"), nutrient), r = cor(rate,
expression))

then mutate() to round the result of the above calculation to two significant digits

mutate(summarize(group_by(filter(ydat, bp == "leucine biosynthesis"), nutrient),
r = cor(rate, expression)), r = round(r, 2))

then arrange() by the rounded correlation coefficient above

arrange(
mutate(

summarize(
group_by(

filter(ydat, bp=="leucine biosynthesis"),
nutrient),

r=cor(rate, expression)),
r=round(r, 2)),

r)

A tibble: 6 x 2

48

nutrient r
<chr> <dbl>

1 Leucine -0.58
2 Glucose -0.04
3 Ammonia 0.16
4 Sulfate 0.33
5 Phosphate 0.44
6 Uracil 0.58

Now compare that with the mental process of what you’re actually trying to accomplish. The
way you would do this without pipes is completely inside-out and backwards from the way you
express in words and in thought what you want to do. The pipe operator |> allows you to
pass the output data frame from one function to the input data frame to another function.

Figure 3.1: Nesting functions versus piping

This is how we would do that in code. It’s as simple as replacing the word “then” in words
to the symbol |> in code. (There’s a keyboard shortcut that I’ll use frequently to insert the

49

|> sequence – you can see what it is by clicking the Tools menu in RStudio, then selecting
Keyboard Shortcut Help. On Mac, it’s CMD-SHIFT-M.)

ydat |>
filter(bp=="leucine biosynthesis") |>
group_by(nutrient) |>
summarize(r=cor(rate, expression)) |>
mutate(r=round(r,2)) |>
arrange(r)

A tibble: 6 x 2
nutrient r
<chr> <dbl>

1 Leucine -0.58
2 Glucose -0.04
3 Ammonia 0.16
4 Sulfate 0.33
5 Phosphate 0.44
6 Uracil 0.58

3.5 Exercises

Here’s a warm-up round. Try the following.

Exercise 3

Show the limiting nutrient and expression values for the gene ADH2 when the growth
rate is restricted to 0.05. Hint: 2 pipes: filter and select.

A tibble: 6 x 2
nutrient expression
<chr> <dbl>

1 Glucose 6.28
2 Ammonia 0.55
3 Phosphate -4.6
4 Sulfate -1.18
5 Leucine 4.15
6 Uracil 0.63

50

Exercise 4

What are the four most highly expressed genes when the growth rate is restricted to 0.05
by restricting glucose? Show only the symbol, expression value, and GO terms. Hint: 4
pipes: filter, arrange, head, and select.

A tibble: 4 x 4
symbol expression bp mf
<chr> <dbl> <chr> <chr>

1 ADH2 6.28 fermentation* alcohol dehydrogenase activity
2 HSP26 5.86 response to stress* unfolded protein binding
3 MLS1 5.64 glyoxylate cycle malate synthase activity
4 HXT5 5.56 hexose transport glucose transporter activity*

Exercise 5

When the growth rate is restricted to 0.05, what is the average expression level across all
genes in the “response to stress” biological process, separately for each limiting nutrient?
What about genes in the “protein biosynthesis” biological process? Hint: 3 pipes: filter,
group_by, summarize.

A tibble: 6 x 2
nutrient meanexp
<chr> <dbl>

1 Ammonia 0.943
2 Glucose 0.743
3 Leucine 0.811
4 Phosphate 0.981
5 Sulfate 0.743
6 Uracil 0.731

A tibble: 6 x 2
nutrient meanexp
<chr> <dbl>

1 Ammonia -1.61
2 Glucose -0.691
3 Leucine -0.574
4 Phosphate -0.750
5 Sulfate -0.913
6 Uracil -0.880

That was easy, right? How about some tougher ones.

51

Exercise 6

First, some review. How do we see the number of distinct values of a variable? Use
n_distinct() within a summarize() call.

ydat |> summarize(n_distinct(mf))

A tibble: 1 x 1
`n_distinct(mf)`

<int>
1 1086

Exercise 7

Which 10 biological process annotations have the most genes associated with them? What
about molecular functions? Hint: 4 pipes: group_by, summarize with n_distinct,
arrange, head.

A tibble: 10 x 2
bp n
<chr> <int>

1 biological process unknown 269
2 protein biosynthesis 182
3 protein amino acid phosphorylation* 78
4 protein biosynthesis* 73
5 cell wall organization and biogenesis* 64
6 regulation of transcription from RNA polymerase II promoter* 49
7 nuclear mRNA splicing, via spliceosome 47
8 DNA repair* 44
9 ER to Golgi transport* 42
10 aerobic respiration* 42

A tibble: 10 x 2
mf n
<chr> <int>

1 molecular function unknown 886
2 structural constituent of ribosome 185
3 protein binding 107
4 RNA binding 63
5 protein binding* 53
6 DNA binding* 44
7 structural molecule activity 43

52

8 GTPase activity 40
9 structural constituent of cytoskeleton 39
10 transcription factor activity 38

Exercise 8

How many distinct genes are there where we know what process the gene is involved in but
we don’t know what it does? Hint: 3 pipes; filter where bp!="biological process
unknown" & mf=="molecular function unknown", and after selecting columns of in-
terest, pipe the output to distinct(). The answer should be 737, and here are a few:

A tibble: 737 x 3
symbol bp mf
<chr> <chr> <chr>

1 SFB2 ER to Golgi transport molec~
2 EDC3 deadenylylation-independent decapping molec~
3 PER1 response to unfolded protein* molec~
4 PEX25 peroxisome organization and biogenesis* molec~
5 BNI5 cytokinesis* molec~
6 CSN12 adaptation to pheromone during conjugation with cellular fusion molec~
7 SEC39 secretory pathway molec~
8 ABC1 ubiquinone biosynthesis molec~
9 PRP46 nuclear mRNA splicing, via spliceosome molec~
10 MAM3 mitochondrion organization and biogenesis* molec~
i 727 more rows

Exercise 9

When the growth rate is restricted to 0.05 by limiting Glucose, which biological processes
are the most upregulated? Show a sorted list with the most upregulated BPs on top,
displaying the biological process and the average expression of all genes in that process
rounded to two digits. Hint: 5 pipes: filter, group_by, summarize, mutate, arrange.

A tibble: 881 x 2
bp meanexp
<chr> <dbl>

1 fermentation* 6.28
2 glyoxylate cycle 5.28
3 oxygen and reactive oxygen species metabolism 5.04
4 fumarate transport* 5.03
5 acetyl-CoA biosynthesis* 4.32
6 gluconeogenesis 3.64

53

7 fatty acid beta-oxidation 3.57
8 lactate transport 3.48
9 carnitine metabolism 3.3
10 alcohol metabolism* 3.25
i 871 more rows

Exercise 10

Group the data by limiting nutrient (primarily) then by biological process. Get the
average expression for all genes annotated with each process, separately for each limiting
nutrient, where the growth rate is restricted to 0.05. Arrange the result to show the most
upregulated processes on top. The initial result will look like the result below. Pipe
this output to a View() statement. What’s going on? Why didn’t the arrange() work?
Hint: 5 pipes: filter, group_by, summarize, arrange, View.

A tibble: 5,257 x 3
Groups: nutrient [6]

nutrient bp meanexp
<chr> <chr> <dbl>

1 Ammonia allantoate transport 6.64
2 Ammonia amino acid transport* 6.64
3 Phosphate glycerophosphodiester transport 6.64
4 Glucose fermentation* 6.28
5 Ammonia allantoin transport 5.56
6 Glucose glyoxylate cycle 5.28
7 Ammonia proline catabolism* 5.14
8 Ammonia urea transport 5.14
9 Glucose oxygen and reactive oxygen species metabolism 5.04
10 Glucose fumarate transport* 5.03
i 5,247 more rows

Exercise 11

Let’s try to further process that result to get only the top three most upregulated biolgocal
processes for each limiting nutrient. Google search “dplyr first result within group.” You’ll
need a filter(row_number()......) in there somewhere. Hint: 5 pipes: filter,
group_by, summarize, arrange, filter(row_number().... Note: dplyr’s pipe syntax
used to be %.% before it changed to |>. So when looking around, you might still see some
people use the old syntax. Now if you try to use the old syntax, you’ll get a deprecation
warning.

A tibble: 18 x 3

54

Groups: nutrient [6]
nutrient bp meanexp
<chr> <chr> <dbl>

1 Ammonia allantoate transport 6.64
2 Ammonia amino acid transport* 6.64
3 Phosphate glycerophosphodiester transport 6.64
4 Glucose fermentation* 6.28
5 Ammonia allantoin transport 5.56
6 Glucose glyoxylate cycle 5.28
7 Glucose oxygen and reactive oxygen species metabolism 5.04
8 Uracil fumarate transport* 4.32
9 Phosphate vacuole fusion, non-autophagic 4.20
10 Leucine fermentation* 4.15
11 Phosphate regulation of cell redox homeostasis* 4.03
12 Leucine fumarate transport* 3.72
13 Leucine glyoxylate cycle 3.65
14 Sulfate protein ubiquitination 3.4
15 Sulfate fumarate transport* 3.27
16 Uracil pyridoxine metabolism 3.11
17 Uracil asparagine catabolism* 3.06
18 Sulfate sulfur amino acid metabolism* 2.69

Exercise 12

There’s a slight problem with the examples above. We’re getting the average expression
of all the biological processes separately by each nutrient. But some of these biological
processes only have a single gene in them! If we tried to do the same thing to get the
correlation between rate and expression, the calculation would work, but we’d get a
warning about a standard deviation being zero. The correlation coefficient value that
results is NA, i.e., missing. While we’re summarizing the correlation between rate and
expression, let’s also show the number of distinct genes within each grouping.

ydat |>
group_by(nutrient, bp) |>
summarize(r=cor(rate, expression), ngenes=n_distinct(symbol))

Warning: There was 1 warning in `summarize()`.
i In argument: `r = cor(rate, expression)`.
i In group 110: `nutrient = "Ammonia"` and `bp = "allantoate transport"`.
Caused by warning in `cor()`:
! the standard deviation is zero

55

A tibble: 5,286 x 4
Groups: nutrient [6]

nutrient bp r ngenes
<chr> <chr> <dbl> <int>

1 Ammonia 'de novo' IMP biosynthesis* 0.312 8
2 Ammonia 'de novo' pyrimidine base biosynthesis -0.0482 3
3 Ammonia 'de novo' pyrimidine base biosynthesis* 0.167 4
4 Ammonia 35S primary transcript processing 0.508 13
5 Ammonia 35S primary transcript processing* 0.424 30
6 Ammonia AMP biosynthesis* 0.464 1
7 Ammonia ATP synthesis coupled proton transport 0.112 15
8 Ammonia ATP synthesis coupled proton transport* -0.541 2
9 Ammonia C-terminal protein amino acid methylation 0.813 1
10 Ammonia D-ribose metabolism -0.837 1
i 5,276 more rows

Take the above code and continue to process the result to show only results where the
process has at least 5 genes. Add a column corresponding to the absolute value of the
correlation coefficient, and show for each nutrient the singular process with the highest
correlation between rate and expression, regardless of direction. Hint: 4 more pipes:
filter, mutate, arrange, and filter again with row_number()==1. Ignore the warning.

A tibble: 6 x 5
Groups: nutrient [6]
nutrient bp r ngenes absr
<chr> <chr> <dbl> <int> <dbl>

1 Glucose telomerase-independent telomere maintenance -0.95 7 0.95
2 Ammonia telomerase-independent telomere maintenance -0.91 7 0.91
3 Leucine telomerase-independent telomere maintenance -0.9 7 0.9
4 Phosphate telomerase-independent telomere maintenance -0.9 7 0.9
5 Uracil telomerase-independent telomere maintenance -0.81 7 0.81
6 Sulfate translational elongation* 0.79 5 0.79

56

4 Tidy Data and Advanced Data Manipulation

Recommended reading prior to class: Sections 1-3 of Wickham, H. “Tidy Data.” Journal
of Statistical Software 59:10 (2014).

Data needed:

• Heart rate data: heartrate2dose.csv
• Tidy yeast data: brauer2007_tidy.csv
• Original (untidy) yeast data: brauer2007_messy.csv
• Yeast systematic names to GO terms: brauer2007_sysname2go.csv

4.1 Tidy data

So far we’ve dealt exclusively with tidy data – data that’s easy to work with, manipulate, and
visualize. That’s because our dataset has two key properties:

1. Each column is a variable.
2. Each row is an observation.

You can read a lot more about tidy data in this paper. Let’s load some untidy data and see
if we can see the difference. This is some made-up data for five different patients (Jon, Ann,
Bill, Kate, and Joe) given three different drugs (A, B, and C), at two doses (10 and 20), and
measuring their heart rate. Download the heartrate2dose.csv file. Load readr and dplyr, and
import and display the data.

library(readr)
library(dplyr)
hr <- read_csv("data/heartrate2dose.csv")
hr

A tibble: 5 x 7
name a_10 a_20 b_10 b_20 c_10 c_20
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 jon 60 55 65 60 70 70
2 ann 65 60 70 65 75 75

57

http://www.jstatsoft.org/article/view/v059i10/v59i10.pdf
http://www.jstatsoft.org/article/view/v059i10/v59i10.pdf
data/heartrate2dose.csv
data/brauer2007_tidy.csv
data/brauer2007_messy.csv
data/brauer2007_sysname2go.csv
http://www.jstatsoft.org/v59/i10/paper
data/heartrate2dose.csv

3 bill 70 65 75 70 80 80
4 kate 75 70 80 75 85 85
5 joe 80 75 85 80 90 90

Notice how with the yeast data each variable (symbol, nutrient, rate, expression, etc.) were
each in their own column. In this heart rate data, we have four variables: name, drug, dose,
and heart rate. Name is in a column, but drug is in the header row. Furthermore the drug and
dose are tied together in the same column, and the heart rate is scattered around the entire
table. If we wanted to do things like filter the dataset where drug=="a" or dose==20 or
heartrate>=80 we couldn’t do it because these variables aren’t in columns.

4.2 The tidyr package

The tidyr package helps with this. There are several functions in the tidyr package but the
ones we’re going to use are separate() and gather(). The gather() function takes multiple
columns, and gathers them into key-value pairs: it makes “wide” data longer. The separate()
function separates one column into multiple columns. So, what we need to do is gather all
the drug/dose data into a column with their corresponding heart rate, and then separate that
column into two separate columns for the drug and dose.

Before we get started, load the tidyr package, and look at the help pages for ?gather and
?separate. Notice how each of these functions takes a data frame as input and returns a data
frame as output. Thus, we can pipe from one function to the next.

library(tidyr)

4.2.1 gather()

The help for ?gather tells us that we first pass in a data frame (or omit the first argument,
and pipe in the data with |>). The next two arguments are the names of the key and value
columns to create, and all the relevant arguments that come after that are the columns we
want to gather together. Here’s one way to do it.

hr |> gather(key=drugdose, value=hr, a_10, a_20, b_10, b_20, c_10, c_20)

A tibble: 30 x 3
name drugdose hr
<chr> <chr> <dbl>

1 jon a_10 60

58

2 ann a_10 65
3 bill a_10 70
4 kate a_10 75
5 joe a_10 80
6 jon a_20 55
7 ann a_20 60
8 bill a_20 65
9 kate a_20 70
10 joe a_20 75
i 20 more rows

But that gets cumbersome to type all those names. What if we had 100 drugs and 3 doses of
each? There are two other ways of specifying which columns to gather. The help for ?gather
tells you how to do this:

... Specification of columns to gather. Use bare variable names. Select all vari-
ables between x and z with x:z, exclude y with -y. For more options, see the select
documentation.

So, we could accomplish the same thing by doing this:

hr |> gather(key=drugdose, value=hr, a_10:c_20)

A tibble: 30 x 3
name drugdose hr
<chr> <chr> <dbl>

1 jon a_10 60
2 ann a_10 65
3 bill a_10 70
4 kate a_10 75
5 joe a_10 80
6 jon a_20 55
7 ann a_20 60
8 bill a_20 65
9 kate a_20 70
10 joe a_20 75
i 20 more rows

But what if we didn’t know the drug names or doses, but we did know that the only other
column in there that we don’t want to gather is name?

hr |> gather(key=drugdose, value=hr, -name)

59

A tibble: 30 x 3
name drugdose hr
<chr> <chr> <dbl>

1 jon a_10 60
2 ann a_10 65
3 bill a_10 70
4 kate a_10 75
5 joe a_10 80
6 jon a_20 55
7 ann a_20 60
8 bill a_20 65
9 kate a_20 70
10 joe a_20 75
i 20 more rows

4.2.2 separate()

Finally, look at the help for ?separate. We can pipe in data and omit the first argument.
The second argument is the column to separate; the into argument is a character vector of
the new column names, and the sep argument is a character used to separate columns, or a
number indicating the position to split at.

Side note, and 60-second lesson on vectors: We can create arbitrary-length
vectors, which are simply variables that contain an arbitrary number of values. To
create a numeric vector, try this: c(5, 42, 22908). That creates a three element
vector. Try c("cat", "dog").

hr |>
gather(key=drugdose, value=hr, -name) |>
separate(drugdose, into=c("drug", "dose"), sep="_")

A tibble: 30 x 4
name drug dose hr
<chr> <chr> <chr> <dbl>

1 jon a 10 60
2 ann a 10 65
3 bill a 10 70
4 kate a 10 75
5 joe a 10 80
6 jon a 20 55
7 ann a 20 60

60

8 bill a 20 65
9 kate a 20 70
10 joe a 20 75
i 20 more rows

4.2.3 |> it all together

Let’s put it all together with gather |> separate |> filter |> group_by |> summarize.

If we create a new data frame that’s a tidy version of hr, we can do those kinds of manipulations
we talked about before:

Create a new data.frame
hrtidy <- hr |>
gather(key=drugdose, value=hr, -name) |>
separate(drugdose, into=c("drug", "dose"), sep="_")

Optionally, view it
View(hrtidy)

filter
hrtidy |> filter(drug=="a")

A tibble: 10 x 4
name drug dose hr
<chr> <chr> <chr> <dbl>

1 jon a 10 60
2 ann a 10 65
3 bill a 10 70
4 kate a 10 75
5 joe a 10 80
6 jon a 20 55
7 ann a 20 60
8 bill a 20 65
9 kate a 20 70
10 joe a 20 75

hrtidy |> filter(dose==20)

A tibble: 15 x 4

61

name drug dose hr
<chr> <chr> <chr> <dbl>

1 jon a 20 55
2 ann a 20 60
3 bill a 20 65
4 kate a 20 70
5 joe a 20 75
6 jon b 20 60
7 ann b 20 65
8 bill b 20 70
9 kate b 20 75
10 joe b 20 80
11 jon c 20 70
12 ann c 20 75
13 bill c 20 80
14 kate c 20 85
15 joe c 20 90

hrtidy |> filter(hr>=80)

A tibble: 10 x 4
name drug dose hr
<chr> <chr> <chr> <dbl>

1 joe a 10 80
2 kate b 10 80
3 joe b 10 85
4 joe b 20 80
5 bill c 10 80
6 kate c 10 85
7 joe c 10 90
8 bill c 20 80
9 kate c 20 85
10 joe c 20 90

analyze
hrtidy |>
filter(name!="joe") |>
group_by(drug, dose) |>
summarize(meanhr=mean(hr))

62

A tibble: 6 x 3
Groups: drug [3]
drug dose meanhr
<chr> <chr> <dbl>

1 a 10 67.5
2 a 20 62.5
3 b 10 72.5
4 b 20 67.5
5 c 10 77.5
6 c 20 77.5

4.3 Tidy the yeast data

Now, let’s take a look at the yeast data again. The data we’ve been working with up to this
point was already cleaned up to a good degree. All of our variables (symbol, nutrient, rate,
expression, GO terms, etc.) were each in their own column. Make sure you have the necessary
libraries loaded, and read in the tidy data once more into an object called ydat.

Load libraries
library(readr)
library(dplyr)
library(tidyr)

Import data
ydat <- read_csv("data/brauer2007_tidy.csv")

Optionally, View
View(ydat)

Or just display to the screen
ydat

A tibble: 198,430 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 SFB2 YNL049C Glucose 0.05 -0.24 ER to Golgi transport mole~
2 <NA> YNL095C Glucose 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C Glucose 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W Glucose 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C Glucose 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W Glucose 0.05 -0.69 biological process un~ mole~

63

7 RIB2 YOL066C Glucose 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W Glucose 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W Glucose 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W Glucose 0.05 -0.16 protein retention in ~ prot~
i 198,420 more rows

But let’s take a look to see what this data originally looked like.

yorig <- read_csv("data/brauer2007_messy.csv")
View(yorig)
yorig

A tibble: 5,536 x 40
GID YORF NAME GWEIGHT G0.05 G0.1 G0.15 G0.2 G0.25 G0.3 N0.05 N0.1
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 GENE1331X A_06~ SFB2~ 1 -0.24 -0.13 -0.21 -0.15 -0.05 -0.05 0.2 0.24
2 GENE4924X A_06~ NA::~ 1 0.28 0.13 -0.4 -0.48 -0.11 0.17 0.31 0
3 GENE4690X A_06~ QRI7~ 1 -0.02 -0.27 -0.27 -0.02 0.24 0.25 0.23 0.06
4 GENE1177X A_06~ CFT2~ 1 -0.33 -0.41 -0.24 -0.03 -0.03 0 0.2 -0.25
5 GENE511X A_06~ SSO2~ 1 0.05 0.02 0.4 0.34 -0.13 -0.14 -0.35 -0.09
6 GENE2133X A_06~ PSP2~ 1 -0.69 -0.03 0.23 0.2 0 -0.27 0.17 -0.4
7 GENE1002X A_06~ RIB2~ 1 -0.55 -0.3 -0.12 -0.03 -0.16 -0.11 0.04 0
8 GENE5478X A_06~ VMA1~ 1 -0.75 -0.12 -0.07 0.02 -0.32 -0.41 0.11 -0.16
9 GENE2065X A_06~ EDC3~ 1 -0.24 -0.22 0.14 0.06 0 -0.13 0.3 0.07
10 GENE2440X A_06~ VPS5~ 1 -0.16 -0.38 0.05 0.14 -0.04 -0.01 0.39 0.2
i 5,526 more rows
i 28 more variables: N0.15 <dbl>, N0.2 <dbl>, N0.25 <dbl>, N0.3 <dbl>,
P0.05 <dbl>, P0.1 <dbl>, P0.15 <dbl>, P0.2 <dbl>, P0.25 <dbl>, P0.3 <dbl>,
S0.05 <dbl>, S0.1 <dbl>, S0.15 <dbl>, S0.2 <dbl>, S0.25 <dbl>, S0.3 <dbl>,
L0.05 <dbl>, L0.1 <dbl>, L0.15 <dbl>, L0.2 <dbl>, L0.25 <dbl>, L0.3 <dbl>,
U0.05 <dbl>, U0.1 <dbl>, U0.15 <dbl>, U0.2 <dbl>, U0.25 <dbl>, U0.3 <dbl>

There are several issues here.

1. Multiple variables are stored in one column. The NAME column contains lots of
information, split up by ::’s.

2. Nutrient and rate variables are stuck in column headers. That is, the column
names contain the values of two variables: nutrient (G, N, P, S, L, U) and growth rate
(0.05-0.3). Remember, with tidy data, each column is a variable and each row is
an observation. Here, we have not one observation per row, but 36 (6 nutrients × 6
rates)! There’s no way we could filter this data by a certain nutrient, or try to calculate
statistics between rate and expression.

64

3. Expression values are scattered throughout the table. Related to the problem
above, and just like our heart rate example, expression isn’t a single-column variable
as in the cleaned tidy data, but it’s scattered around these 36 columns.

4. Other important information is in a separate table. We’re missing all the gene
ontology information we had in the tidy data (no information about biological process
(bp) or molecular function (mf)).

Let’s tackle these issues one at a time, all on a |> pipeline.

4.3.1 separate() the NAME

Let’s separate() the NAME column into multiple different variables. The first row looks like
this:

SFB2::YNL049C::1082129

That is, it looks like we’ve got the gene symbol, the systematic name, and some other number
(that isn’t discussed in the paper). Let’s separate()!

yorig |>
separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::")

A tibble: 5,536 x 42
GID YORF symbol systematic_name somenumber GWEIGHT G0.05 G0.1 G0.15 G0.2
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 GENE~ A_06~ SFB2 YNL049C 1082129 1 -0.24 -0.13 -0.21 -0.15
2 GENE~ A_06~ NA YNL095C 1086222 1 0.28 0.13 -0.4 -0.48
3 GENE~ A_06~ QRI7 YDL104C 1085955 1 -0.02 -0.27 -0.27 -0.02
4 GENE~ A_06~ CFT2 YLR115W 1081958 1 -0.33 -0.41 -0.24 -0.03
5 GENE~ A_06~ SSO2 YMR183C 1081214 1 0.05 0.02 0.4 0.34
6 GENE~ A_06~ PSP2 YML017W 1083036 1 -0.69 -0.03 0.23 0.2
7 GENE~ A_06~ RIB2 YOL066C 1081766 1 -0.55 -0.3 -0.12 -0.03
8 GENE~ A_06~ VMA13 YPR036W 1086860 1 -0.75 -0.12 -0.07 0.02
9 GENE~ A_06~ EDC3 YEL015W 1082963 1 -0.24 -0.22 0.14 0.06
10 GENE~ A_06~ VPS5 YOR069W 1083389 1 -0.16 -0.38 0.05 0.14
i 5,526 more rows
i 32 more variables: G0.25 <dbl>, G0.3 <dbl>, N0.05 <dbl>, N0.1 <dbl>,
N0.15 <dbl>, N0.2 <dbl>, N0.25 <dbl>, N0.3 <dbl>, P0.05 <dbl>, P0.1 <dbl>,
P0.15 <dbl>, P0.2 <dbl>, P0.25 <dbl>, P0.3 <dbl>, S0.05 <dbl>, S0.1 <dbl>,
S0.15 <dbl>, S0.2 <dbl>, S0.25 <dbl>, S0.3 <dbl>, L0.05 <dbl>, L0.1 <dbl>,
L0.15 <dbl>, L0.2 <dbl>, L0.25 <dbl>, L0.3 <dbl>, U0.05 <dbl>, U0.1 <dbl>,
U0.15 <dbl>, U0.2 <dbl>, U0.25 <dbl>, U0.3 <dbl>

65

Now, let’s select() out the stuff we don’t want.

yorig |>
separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::") |>
select(-GID, -YORF, -somenumber, -GWEIGHT)

A tibble: 5,536 x 38
symbol systematic_name G0.05 G0.1 G0.15 G0.2 G0.25 G0.3 N0.05 N0.1 N0.15
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 SFB2 YNL049C -0.24 -0.13 -0.21 -0.15 -0.05 -0.05 0.2 0.24 -0.2
2 NA YNL095C 0.28 0.13 -0.4 -0.48 -0.11 0.17 0.31 0 -0.63
3 QRI7 YDL104C -0.02 -0.27 -0.27 -0.02 0.24 0.25 0.23 0.06 -0.66
4 CFT2 YLR115W -0.33 -0.41 -0.24 -0.03 -0.03 0 0.2 -0.25 -0.49
5 SSO2 YMR183C 0.05 0.02 0.4 0.34 -0.13 -0.14 -0.35 -0.09 -0.08
6 PSP2 YML017W -0.69 -0.03 0.23 0.2 0 -0.27 0.17 -0.4 -0.54
7 RIB2 YOL066C -0.55 -0.3 -0.12 -0.03 -0.16 -0.11 0.04 0 -0.63
8 VMA13 YPR036W -0.75 -0.12 -0.07 0.02 -0.32 -0.41 0.11 -0.16 -0.26
9 EDC3 YEL015W -0.24 -0.22 0.14 0.06 0 -0.13 0.3 0.07 -0.3
10 VPS5 YOR069W -0.16 -0.38 0.05 0.14 -0.04 -0.01 0.39 0.2 0.27
i 5,526 more rows
i 27 more variables: N0.2 <dbl>, N0.25 <dbl>, N0.3 <dbl>, P0.05 <dbl>,
P0.1 <dbl>, P0.15 <dbl>, P0.2 <dbl>, P0.25 <dbl>, P0.3 <dbl>, S0.05 <dbl>,
S0.1 <dbl>, S0.15 <dbl>, S0.2 <dbl>, S0.25 <dbl>, S0.3 <dbl>, L0.05 <dbl>,
L0.1 <dbl>, L0.15 <dbl>, L0.2 <dbl>, L0.25 <dbl>, L0.3 <dbl>, U0.05 <dbl>,
U0.1 <dbl>, U0.15 <dbl>, U0.2 <dbl>, U0.25 <dbl>, U0.3 <dbl>

4.3.2 gather() the data

Let’s gather the data from wide to long format so we get nutrient/rate (key) and expression
(value) in their own columns.

yorig |>
separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::") |>
select(-GID, -YORF, -somenumber, -GWEIGHT) |>
gather(key=nutrientrate, value=expression, G0.05:U0.3)

A tibble: 199,296 x 4
symbol systematic_name nutrientrate expression
<chr> <chr> <chr> <dbl>

1 SFB2 YNL049C G0.05 -0.24

66

2 NA YNL095C G0.05 0.28
3 QRI7 YDL104C G0.05 -0.02
4 CFT2 YLR115W G0.05 -0.33
5 SSO2 YMR183C G0.05 0.05
6 PSP2 YML017W G0.05 -0.69
7 RIB2 YOL066C G0.05 -0.55
8 VMA13 YPR036W G0.05 -0.75
9 EDC3 YEL015W G0.05 -0.24
10 VPS5 YOR069W G0.05 -0.16
i 199,286 more rows

And while we’re at it, let’s separate() that newly created key column. Take a look at the
help for ?separate again. The sep argument could be a delimiter or a number position to
split at. Let’s split after the first character. While we’re at it, let’s hold onto this intermediate
data frame before we add gene ontology information. Call it ynogo.

ynogo <- yorig |>
separate(NAME, into=c("symbol", "systematic_name", "somenumber"), sep="::") |>
select(-GID, -YORF, -somenumber, -GWEIGHT) |>
gather(key=nutrientrate, value=expression, G0.05:U0.3) |>
separate(nutrientrate, into=c("nutrient", "rate"), sep=1)

4.3.3 inner_join() to GO

It’s rare that a data analysis involves only a single table of data. You normally have many
tables that contribute to an analysis, and you need flexible tools to combine them. The dplyr
package has several tools that let you work with multiple tables at once. Do a Google image
search for “SQL Joins”, and look at RStudio’s Data Wrangling Cheat Sheet to learn more.

First, let’s import the dataset that links the systematic name to gene ontology information.
It’s the brauer2007_sysname2go.csv file. Let’s call the imported data frame sn2go.

Import the data
sn2go <- read_csv("data/brauer2007_sysname2go.csv")

Take a look
View(sn2go)
head(sn2go)

A tibble: 6 x 3
systematic_name bp mf

67

https://www.google.com/search?q=SQL+join&tbm=isch
https://www.google.com/search?q=SQL+join&tbm=isch
http://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
data/brauer2007_sysname2go.csv

<chr> <chr> <chr>
1 YNL049C ER to Golgi transport molecular function unknown
2 YNL095C biological process unknown molecular function unknown
3 YDL104C proteolysis and peptidolysis metalloendopeptidase activity
4 YLR115W mRNA polyadenylylation* RNA binding
5 YMR183C vesicle fusion* t-SNARE activity
6 YML017W biological process unknown molecular function unknown

Now, look up some help for ?inner_join. Inner join will return a table with all rows from the
first table where there are matching rows in the second table, and returns all columns from
both tables. Let’s give this a try.

yjoined <- inner_join(ynogo, sn2go, by="systematic_name")
View(yjoined)
yjoined

A tibble: 199,296 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <chr> <dbl> <chr> <chr>

1 SFB2 YNL049C G 0.05 -0.24 ER to Golgi transport mole~
2 NA YNL095C G 0.05 0.28 biological process un~ mole~
3 QRI7 YDL104C G 0.05 -0.02 proteolysis and pepti~ meta~
4 CFT2 YLR115W G 0.05 -0.33 mRNA polyadenylylatio~ RNA ~
5 SSO2 YMR183C G 0.05 0.05 vesicle fusion* t-SN~
6 PSP2 YML017W G 0.05 -0.69 biological process un~ mole~
7 RIB2 YOL066C G 0.05 -0.55 riboflavin biosynthes~ pseu~
8 VMA13 YPR036W G 0.05 -0.75 vacuolar acidification hydr~
9 EDC3 YEL015W G 0.05 -0.24 deadenylylation-indep~ mole~
10 VPS5 YOR069W G 0.05 -0.16 protein retention in ~ prot~
i 199,286 more rows

The glimpse function makes it possible to see a little bit of everything in your data.
glimpse(yjoined)

Rows: 199,296
Columns: 7
$ symbol <chr> "SFB2", "NA", "QRI7", "CFT2", "SSO2", "PSP2", "RIB2", ~
$ systematic_name <chr> "YNL049C", "YNL095C", "YDL104C", "YLR115W", "YMR183C",~
$ nutrient <chr> "G", "G", "G", "G", "G", "G", "G", "G", "G", "G", "G",~
$ rate <chr> "0.05", "0.05", "0.05", "0.05", "0.05", "0.05", "0.05"~

68

$ expression <dbl> -0.24, 0.28, -0.02, -0.33, 0.05, -0.69, -0.55, -0.75, ~
$ bp <chr> "ER to Golgi transport", "biological process unknown",~
$ mf <chr> "molecular function unknown", "molecular function unkn~

There are many different kinds of two-table verbs/joins in dplyr. In this example, every
systematic name in ynogo had a corresponding entry in sn2go, but if this weren’t the case,
those un-annotated genes would have been removed entirely by the inner_join. A left_join
would have returned all the rows in ynogo, but would have filled in bp and mf with missing
values (NA) when there was no corresponding entry. See also: right_join, semi_join, and
anti_join.

4.3.4 Finishing touches

We’re almost there but we have an obvious discrepancy in the number of rows between yjoined
and ydat.

nrow(yjoined)

[1] 199296

nrow(ydat)

[1] 198430

Before we can figure out what rows are different, we need to make sure all of the columns are
the same class and do something more miscellaneous cleanup.

In particular:

1. Convert rate to a numeric column
2. Make sure NA values are coded properly
3. Create (and merge) values to convert “G” to “Glucose”, “L” to “Leucine”, etc.
4. Rename and reorder columns

The code below implements those operations on yjoined.

nutrientlookup <-
tibble(nutrient = c("G", "L", "N", "P", "S", "U"), nutrientname = c("Glucose", "Leucine", "Ammonia","Phosphate", "Sulfate","Uracil"))

yjoined <-

69

yjoined |>
mutate(rate = as.numeric(rate)) |>
mutate(symbol = ifelse(symbol == "NA", NA, symbol)) |>
left_join(nutrientlookup) |>
select(-nutrient) |>
select(symbol:systematic_name, nutrient = nutrientname, rate:mf)

Now we can determine what rows are different between yjoined and ydat using anti_join,
which will return all of the rows that do not match.

anti_join(yjoined, ydat)

A tibble: 866 x 7
symbol systematic_name nutrient rate expression bp mf
<chr> <chr> <chr> <dbl> <dbl> <chr> <chr>

1 <NA> YLL030C Glucose 0.05 NA <NA> <NA>
2 <NA> YOR050C Glucose 0.05 NA <NA> <NA>
3 <NA> YPR039W Glucose 0.05 NA <NA> <NA>
4 <NA> YOL013W-B Glucose 0.05 NA <NA> <NA>
5 HXT12 YIL170W Glucose 0.05 NA biological process un~ mole~
6 <NA> YPR013C Glucose 0.05 NA biological process un~ mole~
7 <NA> YOR314W Glucose 0.05 NA <NA> <NA>
8 <NA> YJL064W Glucose 0.05 NA <NA> <NA>
9 <NA> YPR136C Glucose 0.05 NA <NA> <NA>
10 <NA> YDR015C Glucose 0.05 NA <NA> <NA>
i 856 more rows

Hmmmm … so yjoined has some rows that have missing (NA) expression values. Let’s try
removing those and then comparing the data frame contents one more time.

yjoined <-
yjoined |>
filter(!is.na(expression))

nrow(yjoined)

[1] 198430

nrow(ydat)

70

[1] 198430

all.equal(ydat, yjoined)

[1] "Attributes: < Names: 1 string mismatch >"
[2] "Attributes: < Length mismatch: comparison on first 2 components >"
[3] "Attributes: < Component \"class\": Lengths (4, 3) differ (string compare on first 3) >"
[4] "Attributes: < Component \"class\": 3 string mismatches >"
[5] "Attributes: < Component 2: target is externalptr, current is numeric >"

Looks like that did it!

71

5 Data Visualization with ggplot2

This section will cover fundamental concepts for creating effective data visualization and will
introduce tools and techniques for visualizing large, high-dimensional data using R. We will
review fundamental concepts for visually displaying quantitative information, such as using
series of small multiples, avoiding “chart-junk,” and maximizing the data-ink ratio. We will
cover the grammar of graphics (geoms, aesthetics, stats, and faceting), and using the ggplot2
package to create plots layer-by-layer.

This chapter assumes a basic familiarity with R (Chapter 1), data frames (Chap-
ter 2), and manipulating data with dplyr and |> (Chapter 3).

5.1 Review

5.1.1 Gapminder data

We’re going to work with a different dataset for this section. It’s a cleaned-up excerpt from
the Gapminder data. Download the gapminder.csv data by clicking here or using the link
above.

Let’s read in the data to an object called gm and take a look with View. Remember, we need
to load both the dplyr and readr packages for efficiently reading in and displaying this data.

Load packages
library(readr)
library(dplyr)

Download the data locally and read the file
gm <- read_csv(file="data/gapminder.csv")

Show the first few lines of the data
gm

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
<chr> <chr> <dbl> <dbl> <dbl> <dbl>

72

https://github.com/jennybc/gapminder
http://www.gapminder.org/data/
data/gapminder.csv

1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
i 1,694 more rows

Optionally bring up data in a viewer window.
View(gm)

This particular excerpt has 1704 observations on six variables:

• country a categorical variable 142 levels
• continent, a categorical variable with 5 levels
• year: going from 1952 to 2007 in increments of 5 years
• pop: population
• gdpPercap: GDP per capita
• lifeExp: life expectancy

5.1.2 dplyr review

The dplyr package gives you a handful of useful verbs for managing data. On their own they
don’t do anything that base R can’t do. Here are some of the single-table verbs we’ll be working
with in this chapter (single-table meaning that they only work on a single table – contrast that
to two-table verbs used for joining data together). They all take a data.frame or tbl as their
input for the first argument, and they all return a data.frame or tbl as output.

1. filter(): filters rows of the data where some condition is true
2. select(): selects out particular columns of interest
3. mutate(): adds new columns or changes values of existing columns
4. arrange(): arranges a data frame by the value of a column
5. summarize(): summarizes multiple values to a single value, most useful when combined

with…
6. group_by(): groups a data frame by one or more variable. Most data operations are use-

ful done on groups defined by variables in the the dataset. The group_by function takes
an existing data frame and converts it into a grouped data frame where summarize()
operations are performed by group.

73

Additionally, the |> operator allows you to “chain” operations together. Rather than nesting
functions inside out, the |> operator allows you to write operations left-to-right, top-to-bottom.
Let’s say we wanted to get the average life expectancy and GDP (not GDP per capita) for
Asian countries for each year.

The |> would allow us to do this:

gm |>
mutate(gdp=gdpPercap*pop) |>
filter(continent=="Asia") |>
group_by(year) |>
summarize(mean(lifeExp), mean(gdp))

A tibble: 12 x 3
year `mean(lifeExp)` `mean(gdp)`

<dbl> <dbl> <dbl>
1 1952 46.3 34095762661.

74

2 1957 49.3 47267432088.
3 1962 51.6 60136869012.
4 1967 54.7 84648519224.
5 1972 57.3 124385747313.
6 1977 59.6 159802590186.
7 1982 62.6 194429049919.
8 1987 64.9 241784763369.
9 1992 66.5 307100497486.
10 1997 68.0 387597655323.
11 2002 69.2 458042336179.
12 2007 70.7 627513635079.

Instead of this:

summarize(
group_by(

filter(
mutate(gm, gdp=gdpPercap*pop),

continent=="Asia"),
year),

mean(lifeExp), mean(gdp))

5.2 About ggplot2

ggplot2 is a widely used R package that extends R’s visualization capabilities. It takes the
hassle out of things like creating legends, mapping other variables to scales like color, or
faceting plots into small multiples. We’ll learn about what all these things mean shortly.

Where does the “gg” in ggplot2 come from? The ggplot2 package provides an R implemen-
tation of Leland Wilkinson’s Grammar of Graphics (1999). The Grammar of Graphics allows
you to think beyond the garden variety plot types (e.g. scatterplot, barplot) and the consider
the components that make up a plot or graphic, such as how data are represented on the plot
(as lines, points, etc.), how variables are mapped to coordinates or plotting shape or color,
what transformation or statistical summary is required, and so on.

Specifically, ggplot2 allows you to build a plot layer-by-layer by specifying:

• a geom, which specifies how the data are represented on the plot (points, lines, bars,
etc.),

• aesthetics that map variables in the data to axes on the plot or to plotting size, shape,
color, etc.,

• a stat, a statistical transformation or summary of the data applied prior to plotting,

75

• facets, which we’ve already seen above, that allow the data to be divided into chunks on
the basis of other categorical or continuous variables and the same plot drawn for each
chunk.

First, a note about qplot(). The qplot() function is a quick and dirty way of making ggplot2
plots. You might see it if you look for help with ggplot2, and it’s even covered extensively in
the ggplot2 book. And if you’re used to making plots with built-in base graphics, the qplot()
function will probably feel more familiar. But the sooner you abandon the qplot() syntax
the sooner you’ll start to really understand ggplot2’s approach to building up plots layer by
layer. So we’re not going to use it at all in this class.

5.3 Plotting bivariate data: continuous Y by continuous X

The ggplot function has two required arguments: the data used for creating the plot, and an
aesthetic mapping to describe how variables in said data are mapped to things we can see on
the plot.

First let’s load the package:

library(ggplot2)

Now, let’s lay out the plot. If we want to plot a continuous Y variable by a continuous X
variable we’re probably most interested in a scatter plot. Here, we’re telling ggplot that we
want to use the gm dataset, and the aesthetic mapping will map gdpPercap onto the x-axis
and lifeExp onto the y-axis. Remember that the variable names are case sensitive!

ggplot(gm, aes(x = gdpPercap, y = lifeExp))

76

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE

xp

When we do that we get a blank canvas with no data showing (you might get an error if you’re
using an old version of ggplot2). That’s because all we’ve done is laid out a two-dimensional
plot specifying what goes on the x and y axes, but we haven’t told it what kind of geometric
object to plot. The obvious choice here is a point. Check out docs.ggplot2.org to see what
kind of geoms are available.

ggplot(gm, aes(x = gdpPercap, y = lifeExp)) + geom_point()

77

http://docs.ggplot2.org/

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE

xp

Here, we’ve built our plot in layers. First, we create a canvas for plotting layers to come
using the ggplot function, specifying which data to use (here, the gm data frame), and an
aesthetic mapping of gdpPercap to the x-axis and lifeExp to the y-axis. We next add a
layer to the plot, specifying a geom, or a way of visually representing the aesthetic mapping.

Now, the typical workflow for building up a ggplot2 plot is to first construct the figure and
save that to a variable (for example, p), and as you’re experimenting, you can continue to
re-define the p object as you develop “keeper commands”.

First, let’s construct the graphic. Notice that we don’t have to specify x= and y= if we specify
the arguments in the correct order (x is first, y is second).

p <- ggplot(gm, aes(gdpPercap, lifeExp))

The p object now contains the canvas, but nothing else. Try displaying it by just running p.
Let’s experiment with adding points and a different scale to the x-axis.

Experiment with adding poings
p + geom_point()

78

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE

xp

Experiment with a different scale
p + geom_point() + scale_x_log10()

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

I like the look of using a log scale for the x-axis. Let’s make that stick.

79

p <- p + scale_x_log10()

Now, if we re-ran p still nothing would show up because the p object just contains a blank
canvas. Now, re-plot again with a layer of points:

p + geom_point()

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

Now notice what I’ve saved to p at this point: only the basic plot layout and the log10 mapping
on the x-axis. I didn’t save any layers yet because I want to fiddle around with the points for
a bit first.

Above we implied the aesthetic mappings for the x- and y- axis should be gdpPercap and
lifeExp, but we can also add aesthetic mappings to the geoms themselves. For instance,
what if we wanted to color the points by the value of another variable in the dataset, say,
continent?

p + geom_point(aes(color=continent))

80

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp
continent

Africa
Americas
Asia
Europe
Oceania

Notice the difference here. If I wanted the colors to be some static value, I wouldn’t wrap
that in a call to aes(). I would just specify it outright. Same thing with other features
of the points. For example, lets make all the points huge (size=8) blue (color="blue")
semitransparent (alpha=(1/4)) triangles (pch=17):

p + geom_point(color="blue", pch=17, size=8, alpha=1/4)

81

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

Now, this time, let’s map the aesthetics of the point character to certain features of the
data. For instance, let’s give the points different colors and character shapes according to the
continent, and map the size of the point onto the life Expectancy:

p + geom_point(aes(col=continent, shape=continent, size=lifeExp))

82

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

lifeExp
40
60
80

continent
Africa
Americas
Asia
Europe
Oceania

Now, this isn’t a great plot because there are several aesthetic mappings that are redundant.
Life expectancy is mapped to both the y-axis and the size of the points – the size mapping
is superfluous. Similarly, continent is mapped to both the color and the point character (the
shape is superfluous). Let’s get rid of that, but let’s make the points a little bigger outsize of
an aesthetic mapping.

p + geom_point(aes(col=continent), size=3)

83

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp
continent

Africa
Americas
Asia
Europe
Oceania

Exercise 1

Re-create this same plot from scratch without saving anything to a variable. That is,
start from the ggplot call.

• Start with the ggplot() function.
• Use the gm data.
• Map gdpPercap to the x-axis and lifeExp to the y-axis.
• Add points to the plot

– Make the points size 3
– Map continent onto the aesthetics of the point

• Use a log10 scale for the x-axis.

84

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

continent
Africa
Americas
Asia
Europe
Oceania

5.3.1 Adding layers

Let’s add a fitted curve to the points. Recreate the plot in the p object if you need to.

p <- ggplot(gm, aes(gdpPercap, lifeExp)) + scale_x_log10()
p + geom_point() + geom_smooth()

85

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

By default geom_smooth() will try to lowess for data with n<1000 or generalized additive
models for data with n>1000. We can change that behavior by tweaking the parameters to
use a thick red line, use a linear model instead of a GAM, and to turn off the standard error
stripes.

p + geom_point() + geom_smooth(lwd=2, se=FALSE, method="lm", col="red")

86

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

But let’s add back in our aesthetic mapping to the continents. Notice what happens here.
We’re mapping continent as an aesthetic mapping to the color of the points only – so
geom_smooth() still works only on the entire data.

p + geom_point(aes(color = continent)) + geom_smooth()

87

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp
continent

Africa
Americas
Asia
Europe
Oceania

But notice what happens here: we make the call to aes() outside of the geom_point() call,
and the continent variable gets mapped as an aesthetic to any further geoms. So here, we get
separate smoothing lines for each continent. Let’s do it again but remove the standard error
stripes and make the lines a bit thicker.

p + aes(color = continent) + geom_point() + geom_smooth()
p + aes(color = continent) + geom_point() + geom_smooth(se=F, lwd=2)

88

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp
continent

Africa
Americas
Asia
Europe
Oceania

5.3.2 Faceting

Facets display subsets of the data in different panels. There are a couple ways to do this,
but facet_wrap() tries to sensibly wrap a series of facets into a 2-dimensional grid of small
multiples. Just give it a formula specifying which variables to facet by. We can continue adding
more layers, such as smoothing. If you have a look at the help for ?facet_wrap() you’ll see
that we can control how the wrapping is laid out.

p + geom_point() + facet_wrap(~continent)
p + geom_point() + geom_smooth() + facet_wrap(~continent, ncol=1)

89

Oceania

Europe

Asia

Americas

Africa

1e+03 1e+04 1e+05

40

60

80

40

60

80

40

60

80

40

60

80

40

60

80

gdpPercap

lif
eE

xp

90

5.3.3 Saving plots

There are a few ways to save ggplots. The quickest way, that works in an interactive session,
is to use the ggsave() function. You give it a file name and by default it saves the last plot
that was printed to the screen.

p + geom_point()
ggsave(file="myplot.png")

But if you’re running this through a script, the best way to do it is to pass ggsave() the
object containing the plot that is meant to be saved. We can also adjust things like the width,
height, and resolution. ggsave() also recognizes the name of the file extension and saves the
appropriate kind of file. Let’s save a PDF.

pfinal <- p + geom_point() + geom_smooth() + facet_wrap(~continent, ncol=1)
ggsave(pfinal, file="myplot.pdf", width=5, height=15)

Exercise 2

1. Make a scatter plot of lifeExp on the y-axis against year on the x.
2. Make a series of small multiples faceting on continent.
3. Add a fitted curve, smooth or lm, with and without facets.
4. Bonus: using geom_line() and and aesthetic mapping country to group=, make a

“spaghetti plot”, showing semitransparent lines connected for each country, faceted
by continent. Add a smoothed loess curve with a thick (lwd=3) line with no stan-
dard error stripe. Reduce the opacity (alpha=) of the individual black lines. Don’t
show Oceania countries (that is, filter() the data where continent!="Oceania"
before you plot it).

Asia Europe

Africa Americas

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

40

60

80

40

60

80

year

lif
eE

xp

91

5.4 Plotting bivariate data: continuous Y by categorical X

With the last example we examined the relationship between a continuous Y variable against
a continuous X variable. A scatter plot was the obvious kind of data visualization. But what
if we wanted to visualize a continuous Y variable against a categorical X variable? We sort of
saw what that looked like in the last exercise. year is a continuous variable, but in this dataset,
it’s broken up into 5-year segments, so you could almost think of each year as a categorical
variable. But a better example would be life expectancy against continent or country.

First, let’s set up the basic plot:

p <- ggplot(gm, aes(continent, lifeExp))

Then add points:

p + geom_point()

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

That’s not terribly useful. There’s a big overplotting problem. We can try to solve with
transparency:

p + geom_point(alpha=1/4)

92

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

But that really only gets us so far. What if we spread things out by adding a little bit of
horizontal noise (aka “jitter”) to the data.

p + geom_jitter()

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

93

Note that the little bit of horizontal noise that’s added to the jitter is random. If you run
that command over and over again, each time it will look slightly different. The idea is to
visualize the density at each vertical position, and spreading out the points horizontally allows
you to do that. If there were still lots of over-plotting you might think about adding some
transparency by setting the alpha= value for the jitter.

p + geom_jitter(alpha=1/2)

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

Probably a more common visualization is to show a box plot:

p + geom_boxplot()

94

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

But why not show the summary and the raw data?

p + geom_jitter() + geom_boxplot()

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

Notice how in that example we first added the jitter layer then added the boxplot layer. But

95

the boxplot is now superimposed over the jitter layer. Let’s make the jitter layer go on top.
Also, go back to just the boxplots. Notice that the outliers are represented as points. But
there’s no distinction between the outlier point from the boxplot geom and all the other points
from the jitter geom. Let’s change that. Notice the British spelling.

p + geom_boxplot(outlier.colour = "red") + geom_jitter(alpha=1/2)

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

There’s another geom that’s useful here, called a voilin plot.

p + geom_violin()

96

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

p + geom_violin() + geom_jitter(alpha=1/2)

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

Let’s go back to our boxplot for a moment.

97

p + geom_boxplot()

40

60

80

Africa Americas Asia Europe Oceania
continent

lif
eE

xp

This plot would be a lot more effective if the continents were shown in some sort of order other
than alphabetical. To do that, we’ll have to go back to our basic build of the plot again and
use the reorder function in our original aesthetic mapping. Here, reorder is taking the first
variable, which is some categorical variable, and ordering it by the level of the mean of the
second variable, which is a continuous variable. It looks like this

p <- ggplot(gm, aes(x=reorder(continent, lifeExp), y=lifeExp))

p + geom_boxplot()

98

40

60

80

Africa Asia Americas Europe Oceania
reorder(continent, lifeExp)

lif
eE

xp

Exercise 3

1. Make a jittered strip plot of GDP per capita against continent.
2. Make a box plot of GDP per capita against continent.
3. Using a log10 y-axis scale, overlay semitransparent jittered points on top of box

plots, where outlying points are colored.
4. BONUS: Try to reorder the continents on the x-axis by GDP per capita. Why

isn’t this working as expected? See ?reorder for clues.

99

0

30000

60000

90000

Africa Americas Asia Europe Oceania
continent

gd
pP

er
ca

p

0

30000

60000

90000

Africa Americas Asia Europe Oceania
continent

gd
pP

er
ca

p

100

1e+03

1e+04

1e+05

Africa Americas Asia Europe Oceania
reorder(continent, gdpPercap)

gd
pP

er
ca

p

A tibble: 5 x 2
continent `mean(gdpPercap)`
<chr> <dbl>

1 Africa 2194.
2 Americas 7136.
3 Asia 7902.
4 Europe 14469.
5 Oceania 18622.

A tibble: 5 x 2
continent `mean(log10(gdpPercap))`
<chr> <dbl>

1 Africa 3.15
2 Americas 3.74
3 Asia 3.51
4 Europe 4.06
5 Oceania 4.25

101

1e+03

1e+04

1e+05

Africa Asia Americas Europe Oceania
reorder(continent, gdpPercap, FUN = function(x) mean(log10(x)))

gd
pP

er
ca

p

5.5 Plotting univariate continuous data

What if we just wanted to visualize distribution of a single continuous variable? A histogram
is the usual go-to visualization. Here we only have one aesthetic mapping instead of two.

p <- ggplot(gm, aes(lifeExp))

p + geom_histogram()

102

0

50

100

150

40 60 80
lifeExp

co
un

t

When we do this ggplot lets us know that we’re automatically selecting the width of the bins,
and we might want to think about this a little further.

p + geom_histogram(bins=30)

0

50

100

150

40 60 80
lifeExp

co
un

t

103

p + geom_histogram(bins=10)

0

100

200

300

400

20 40 60 80
lifeExp

co
un

t

p + geom_histogram(bins=200)

0

10

20

30

40 60 80
lifeExp

co
un

t

104

p + geom_histogram(bins=60)

0

25

50

75

40 60 80
lifeExp

co
un

t

Alternative we could plot a smoothed density curve instead of a histogram:

p + geom_density()

105

0.00

0.01

0.02

0.03

40 60 80
lifeExp

de
ns

ity

Back to histograms. What if we wanted to color this by continent?

p + geom_histogram(aes(color=continent))

0

50

100

150

40 60 80
lifeExp

co
un

t

continent
Africa
Americas
Asia
Europe
Oceania

106

That’s not what we had in mind. That’s just the outline of the bars. We want to change the
fill color of the bars.

p + geom_histogram(aes(fill=continent))

0

50

100

150

40 60 80
lifeExp

co
un

t

continent
Africa
Americas
Asia
Europe
Oceania

Well, that’s not exactly what we want either. If you look at the help for ?geom_histogram
you’ll see that by default it stacks overlapping points. This isn’t really an effective visualization.
Let’s change the position argument.

p + geom_histogram(aes(fill=continent), position="identity")

107

0

20

40

60

40 60 80
lifeExp

co
un

t
continent

Africa
Americas
Asia
Europe
Oceania

But the problem there is that the histograms are blocking each other. What if we tried
transparency?

p + geom_histogram(aes(fill=continent), position="identity", alpha=1/3)

0

20

40

60

40 60 80
lifeExp

co
un

t

continent
Africa
Americas
Asia
Europe
Oceania

108

That’s somewhat helpful, and might work for two distributions, but it gets cumbersome with
5. Let’s go back and try this with density plots, first changing the color of the line:

p + geom_density(aes(color=continent))

0.000

0.025

0.050

0.075

0.100

40 60 80
lifeExp

de
ns

ity

continent
Africa
Americas
Asia
Europe
Oceania

Then by changing the color of the fill and setting the transparency to 25%:

p + geom_density(aes(fill=continent), alpha=1/4)

109

0.000

0.025

0.050

0.075

0.100

40 60 80
lifeExp

de
ns

ity
continent

Africa
Americas
Asia
Europe
Oceania

Exercise 4

1. Plot a histogram of GDP Per Capita.
2. Do the same but use a log10 x-axis.
3. Still on the log10 x-axis scale, try a density plot mapping continent to the fill of

each density distribution, and reduce the opacity.
4. Still on the log10 x-axis scale, make a histogram faceted by continent and filled by

continent. Facet with a single column (see ?facet_wrap for help).
5. Save this figure to a 6x10 PDF file.

5.6 Publication-ready plots & themes

Let’s make a plot we made earlier (life expectancy versus the log of GDP per capita with
points colored by continent with lowess smooth curves overlaid without the standard error
ribbon):

p <- ggplot(gm, aes(gdpPercap, lifeExp))
p <- p + scale_x_log10()
p <- p + aes(col=continent) + geom_point() + geom_smooth(lwd=2, se=FALSE)

Give the plot a title and axis labels:

110

p <- p + ggtitle("Life expectancy vs GDP by Continent")
p <- p + xlab("GDP Per Capita (USD)") + ylab("Life Expectancy (years)")

By default, the “gray” theme is the usual background (I’ve changed this course website to use
the black and white background for all images).

p + theme_gray()

40

60

80

1e+03 1e+04 1e+05
GDP Per Capita (USD)

Li
fe

 E
xp

ec
ta

nc
y

(y
ea

rs
)

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy vs GDP by Continent

We could also get a black and white background:

p + theme_bw()

111

40

60

80

1e+03 1e+04 1e+05
GDP Per Capita (USD)

Li
fe

 E
xp

ec
ta

nc
y

(y
ea

rs
)

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy vs GDP by Continent

Or go a step further and remove the gridlines:

p + theme_classic()

40

60

80

1e+03 1e+04 1e+05
GDP Per Capita (USD)

Li
fe

 E
xp

ec
ta

nc
y

(y
ea

rs
)

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy vs GDP by Continent

112

Finally, there’s another package that gives us lots of different themes. Install it if you don’t
have it already. Install all its dependencies along with it.

install.packages("ggthemes", dependencies = TRUE)

library(ggthemes)
p <- ggplot(gm, aes(gdpPercap, lifeExp))
p <- p + scale_x_log10()
p <- p + aes(col=continent) + geom_point() + geom_smooth(lwd=2, se=FALSE)
p + theme_excel()
p + theme_excel() + scale_colour_excel()
p + theme_gdocs() + scale_colour_gdocs()
p + theme_stata() + scale_colour_stata()
p + theme_wsj() + scale_colour_wsj()
p + theme_economist()
p + theme_fivethirtyeight()
p + theme_tufte()

113

6 Refresher: Tidy Exploratory Data Analysis

6.1 Chapter overview

This is a refresher chapter designed to be read after completing all the chapters that came
before it.

The data and analyses here were inspired by the Tidy Tuesday project – a weekly social data
project in R from the R for Data Science online learning community @R4DScommunity.

We’re going to use two different data sets. One containing data on movie budgets and profits
that was featured in a FiveThirtyEight article on horror movies and profits, and another with
data on college majors and income from the American Community Survey.

Packages needed for this analysis are loaded below. If you don’t have one of these packages
installed, simply install it once using install.packages("PackageName"). A quick note on
the tidyverse package (https://www.tidyverse.org/): the tidyverse is a collection of other
packages that are often used together. When you install or load tidyverse, you also install and
load all the packages that we’ve used previously: dplyr, tidyr, ggplot2, as well as several others.
Because we’ll be using so many different packages from the tidyverse collection, it’s more
efficient load this “meta-package” rather than loading each individual package separately.

library(tidyverse)
library(ggrepel)
library(scales)
library(lubridate)

I’ll demonstrate some functionality from these other packages. They’re handy to have installed,
but are not strictly required.

library(plotly)
library(DT)

114

https://github.com/rfordatascience/tidytuesday
https://r4ds.had.co.nz/
https://x.com/R4DScommunity

6.2 Horror Movies & Profit

6.2.1 About the data

The raw data can be downloaded here: movies.csv.

This data was featured in the FiveThirtyEight article, “Scary Movies Are The Best Investment
In Hollywood”.

“Horror movies get nowhere near as much draw at the box office as the big-time
summer blockbusters or action/adventure movies – the horror genre accounts for
only 3.7 percent of the total box-office haul this year – but there’s a huge incentive
for studios to continue pushing them out.

The return-on-investment potential for horror movies is absurd. For example,
“Paranormal Activity” was made for $450,000 and pulled in $194 million – 431
times the original budget. That’s an extreme, I-invested-in-Microsoft-when-Bill-
Gates-was-working-in-a-garage case, but it’s not rare. And that’s what makes
horror such a compelling genre to produce.”

– Quote from Walt Hickey for fivethirtyeight article.

Data dictionary (data from the-numbers.com):

Header Description
release_date month-day-year
movie Movie title
production_budget Money spent to create the film
domestic_gross Gross revenue from USA
worldwide_gross Gross worldwide revenue
distributor The distribution company
mpaa_rating Appropriate age rating by the US-based rating agency
genre Film category

6.2.2 Import and clean

If you haven’t already loaded the packages we need, go ahead and do that now.

library(tidyverse)
library(ggrepel)
library(scales)
library(lubridate)

115

data/movies.csv
https://fivethirtyeight.com/features/scary-movies-are-the-best-investment-in-hollywood/
https://fivethirtyeight.com/features/scary-movies-are-the-best-investment-in-hollywood/
https://twitter.com/WaltHickey
https://www.the-numbers.com/

Now, use the read_csv() function from readr (loaded when you load tidyverse), to read in
the movies.csv dataset into a new object called mov_raw.

mov_raw <- read_csv("data/movies.csv")
mov_raw

Let’s clean up the data a bit. Remember, construct your pipeline one step at a time first.
Once you’re happy with the result, assign the results to a new object, mov.

• Get rid of the blank X1 Variable.
• Change release date into an actual date.
• Calculate the return on investment as the worldwide_gross/production_budget.
• Calculate the percentage of total gross as domestic revenue.
• Get the year, month, and day out of the release date.
• Remove rows where the revenue is $0 (unreleased movies, or data integrity problems),

and remove rows missing information about the distributor. Go ahead and remove any
data where the rating is unavailable also.

mov <- mov_raw |>
select(-...1) |>
mutate(release_date = mdy(release_date)) |>
mutate(roi = worldwide_gross / production_budget) |>
mutate(pct_domestic = domestic_gross / worldwide_gross) |>
mutate(year = year(release_date)) |>
mutate(month = month(release_date, label = TRUE)) |>
mutate(day = wday(release_date, label = TRUE)) |>
arrange(desc(release_date)) |>
filter(worldwide_gross > 0) |>
filter(!is.na(distributor)) |>
filter(!is.na(mpaa_rating))

mov

Let’s take a look at the distribution of release date.

ggplot(mov, aes(year)) + geom_histogram(bins=40)

116

data/movies.csv

0

100

200

300

400

1950 1975 2000
year

co
un

t

There doesn’t appear to be much documented berfore 1975, so let’s restrict (read: filter) the
dataset to movies made since 1975. Also, we’re going to be doing some analyses by year,
and since the data for 2018 is still incomplete, let’s remove all of 2018. Let’s get anything
produced in 1975 and after (>=1975) but before 2018 (<2018). Add the final filter statement
to the assignment, and make the plot again.

mov <- mov_raw |>
select(-...1) |>
mutate(release_date = mdy(release_date)) |>
mutate(roi = worldwide_gross / production_budget) |>
mutate(pct_domestic = domestic_gross / worldwide_gross) |>
mutate(year = year(release_date)) |>
mutate(month = month(release_date, label = TRUE)) |>
mutate(day = wday(release_date, label = TRUE)) |>
arrange(desc(release_date)) |>
filter(worldwide_gross > 0) |>
filter(!is.na(distributor)) |>
filter(!is.na(mpaa_rating)) |>
filter(year>=1975 & year <2018)

mov

117

6.2.3 Exploratory Data Analysis

Which days are movies released on? The dplyr count() function counts the number of occu-
rances of a particular variable. It’s shorthand for a group_by() followed by summarize(n=n()).
The geom_col() makes a bar chart where the height of the bar is the count of the number of
cases, y, at each x position. Feel free to add labels if you want.

mov |>
count(day, sort=TRUE) |>
ggplot(aes(day, n)) +
geom_col() +
labs(x="", y="Number of movies released",

title="Which days are movies released on?",
caption="Adapted from @jaseziv") +

theme_classic()

0

1000

2000

Sun Mon Tue Wed Thu Fri Sat

N
um

be
r

of
 m

ov
ie

s
re

le
as

ed

Which days are movies released on?

Adapted from @jaseziv

Exercise 1

Does the day a movie is release affect revenue? Make a boxplot showing the worldwide
gross revenue for each day.

118

$10,000

$1,000,000

$100,000,000

Sun Mon Tue Wed Thu Fri Sat
Release day

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e
Does the day a movie is release affect revenue?

Adapted from @jaseziv

What about month? Just swap day for month in the code.

mov |>
ggplot(aes(month, worldwide_gross)) +
geom_boxplot(col="gray10", fill="gray90") +
scale_y_log10(labels=dollar_format()) +
labs(x="Release month",

y="Worldwide gross revenue",
title="Does the day a movie is release affect revenue?",
caption="Adapted from @jaseziv") +

theme_classic()

119

$10,000

$1,000,000

$100,000,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Release month

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e

Does the day a movie is release affect revenue?

Adapted from @jaseziv

We could also get a quantitative look at the average revenue by day using a group-by summarize
operation:

mov |>
group_by(day) |>
summarize(rev=mean(worldwide_gross))

A tibble: 7 x 2
day rev
<ord> <dbl>

1 Sun 70256412.
2 Mon 141521289.
3 Tue 177233110.
4 Wed 130794183.
5 Thu 194466996.
6 Fri 90769834.
7 Sat 89889497.

It looks like summer months and holiday months at the end of the year fare well. Let’s look
at a table and run a regression analysis.

120

mov |>
group_by(month) |>
summarize(rev=mean(worldwide_gross))

mov |>
mutate(month=factor(month, ordered=FALSE)) |>
lm(worldwide_gross~month, data=_) |>
summary()

What does the worldwide movie market look like by decade? Let’s first group by year and
genre and compute the sum of the worldwide gross revenue. After we do that, let’s plot a
barplot showing year on the x-axis and the sum of the revenue on the y-axis, where we’re
passing the genre variable to the fill aesthetic of the bar.

mov |>
group_by(year, genre) |>
summarize(revenue=sum(worldwide_gross)) |>
ggplot(aes(year, revenue)) +
geom_col(aes(fill=genre)) +
scale_y_continuous(labels=dollar_format()) +
labs(x="", y="Worldwide revenue", title="Worldwide Film Market by Decade")

$0

$5,000,000,000

$10,000,000,000

$15,000,000,000

1980 1990 2000 2010

W
or

ld
w

id
e

re
ve

nu
e genre

Action

Adventure

Comedy

Drama

Horror

Worldwide Film Market by Decade

Which distributors produce the highest grossing movies by genre? First let’s lump all dis-

121

tributors together into 5 major distributors with the most movies, lumping all others into an
“Other” category. The fct_lump function from the forcats package (loaded with tidyverse)
will do this for you. Take a look at just that result first. Then let’s plot a geom_col(), which
plots the actual value of the thing we put on the y-axis (worldwide gross revenue in this case).
Because geom_col() puts all the values on top of one another, the highest value will be the
one displayed. Let’s add position="dodge" so they’re beside one another instead of stacked.
We can continue to add additional things to make the plot pretty. I like the look of this better
when we flip the coordinate system with coord_flip().

mov |>
mutate(distributor=fct_lump(distributor, 5)) |>
ggplot(aes(distributor, worldwide_gross)) + geom_col(aes(fill=genre), position="dodge") +
scale_y_continuous(labels = dollar_format()) +
labs(x="",

y="Worldwide revenue",
title="Which distributors produce the highest grossing movies by genre?",
caption="Adapted from @JamesCBorders") +

coord_flip()

20th Century Fox

Paramount Pictures

Sony Pictures

Universal

Warner Bros.

Other

$0 $300,000,000$600,000,000$900,000,000$1,200,000,000
Worldwide revenue

genre

Action

Adventure

Comedy

Drama

Horror

Which distributors produce the highest grossing movies by genre?

Adapted from @JamesCBorders

It looks like Universal made the highest-grossing action and adventure movies, while Warner
Bros made the highest grossing horror movies.

But what about return on investment?

122

mov |>
group_by(genre) |>
summarize(roi=mean(roi))

A tibble: 5 x 2
genre roi
<chr> <dbl>

1 Action 2.82
2 Adventure 3.60
3 Comedy 3.48
4 Drama 3.40
5 Horror 11.2

It looks like horror movies have overwhelmingly the highest return on investment. Let’s look
at this across the top distributors.

Exercise 2

Modify the code above to look at return on investment instead of worldwide gross revenue.

20th Century Fox

Paramount Pictures

Sony Pictures

Universal

Warner Bros.

Other

0 100 200 300 400
X Return on Investment

genre

Action

Adventure

Comedy

Drama

Horror

Which genres produce the higest ROI for the top distributors?

Adapted from @JamesCBorders

Let’s make a scatter plot showing the worldwide gross revenue over the production budget.
Let’s make the size of the point relative to the ROI. Let’s add a “breakeven” line that has a
slope of 1 and a y-intercept of zero. Let’s facet by genre.

123

mov |>
ggplot(aes(production_budget, worldwide_gross)) +
geom_point(aes(size = roi)) +
geom_abline(slope = 1, intercept = 0, col = "red") +
facet_wrap(~ genre) +
scale_x_log10(labels = dollar_format()) +
scale_y_log10(labels = dollar_format()) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Production Budget",

y = "Worldwide gross revenue",
size = "Return on Investment")

Drama Horror

Action Adventure Comedy

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$10,000

$1,000,000

$100,000,000

$10,000

$1,000,000

$100,000,000

Production Budget

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e

Return on Investment

100

200

300

400

Generally most of the points lie above the “breakeven” line. This is good – if movies weren’t
profitable they wouldn’t keep making them. Proportionally there seem to be many more larger
points in the Horror genre, indicative of higher ROI.

Let’s create a faceted grid showing distributor by genre. Paramount and Other distributors
have the largest share of low-budget high-revenue horror films.

124

mov |>
mutate(distributor = fct_lump(distributor, 5)) |>
ggplot(aes(production_budget, worldwide_gross)) +
geom_point(aes(size = roi)) +
geom_abline(slope = 1, intercept = 0) +
facet_grid(distributor ~ genre) +
scale_x_log10(labels = dollar_format()) +
scale_y_log10(labels = dollar_format()) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Production Budget",

y = "Worldwide gross revenue",
size = "Return on Investment")

125

Action Adventure Comedy Drama Horror

20th C
entury F

ox
P

aram
ount P

ictures
S

ony P
ictures

U
niversal

W
arner B

ros.
O

ther

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$1
,0

00
,0

00

$1
0,

00
0,

00
0

$1
00

,0
00

,0
00

$10,000

$1,000,000

$100,000,000

$10,000

$1,000,000

$100,000,000

$10,000

$1,000,000

$100,000,000

$10,000

$1,000,000

$100,000,000

$10,000

$1,000,000

$100,000,000

$10,000

$1,000,000

$100,000,000

Production Budget

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e

Return on Investment

100

200

300

400

What were those super profitable movies? Looks like they’re mostly horror movies. One thing
that’s helpful to do here is to make movies a factor variable, reordering its levels by the median
ROI. Look at the help for ?fct_reorder for this. I also like to coord_flip() this plot.

mov |>
arrange(desc(roi)) |>
head(20) |>
mutate(movie=fct_reorder(movie, roi)) |>
ggplot(aes(movie, roi)) +
geom_col(aes(fill=genre)) +
labs(x="Movie",

126

y="Return On Investment",
title="Top 20 most profitable movies",
caption="Adapted from @DaveBloom11") +

coord_flip() +
geom_text(aes(label=paste0(round(roi), "x "), hjust=1), col="white")

432x
414x

225x
215x

115x
102x
87x

76x
75x
72x
67x
67x
63x
59x
56x
55x
51x
47x
45x
44x Moonlight

Les Intouchables
National Lampoon's Animal House

Get Out
God's Not Dead

Split
Paranormal Activity 2

Unfriended
Insidious
Fireproof

Star Wars Ep. IV: A New Hope
The Full Monty

ET: The Extra−Terrestrial
Saw

The Devil Inside
Napoleon Dynamite

Halloween
Rocky

The Blair Witch Project
Paranormal Activity

0 100 200 300 400
Return On Investment

M
ov

ie

genre

Adventure

Comedy

Drama

Horror

Top 20 most profitable movies

Adapted from @DaveBloom11

It might be informative to run the same analysis for movies that had either exclusive US
distribution, or no US distribution at all. We could simply filter for movies with 100% of the
revenue coming from domestic gross revenue US only, or 0% from domestic (no US distribution).
Just add a filter statement in the pipeline prior to plotting.

mov |>
filter(pct_domestic==1) |>
arrange(desc(roi)) |>
head(20) |>
mutate(movie=fct_reorder(movie, roi)) |>
ggplot(aes(movie, roi)) +
geom_col(aes(fill=genre)) +
labs(x="Movie",

y="Return On Investment",
title="Top 20 most profitable movies with US-only distribution",
caption="Adapted from @DaveBloom11") +

127

coord_flip() +
geom_text(aes(label=paste0(round(roi), "x "), hjust=1), col="white")

mov |>
filter(pct_domestic==0) |>
arrange(desc(roi)) |>
head(20) |>
mutate(movie=fct_reorder(movie, roi)) |>
ggplot(aes(movie, roi)) +
geom_col(aes(fill=genre)) +
labs(x="Movie",

y="Return On Investment",
title="Top 20 most profitable movies with no US distribution",
caption="Adapted from @DaveBloom11") +

coord_flip()

What about movie ratings? R-rated movies have a lower average revenue but ROI isn’t sub-
stantially less. The n() function is a helper function that just returns the number of rows
for each group in a grouped data frame. We can see that while G-rated movies have the
highest mean revenue, there were relatively few of them produced, and had a lower total
revenue. There were more R-rated movies, but PG-13 movies really drove the total revenue
worldwide.

mov |>
group_by(mpaa_rating) |>
summarize(

meanrev = mean(worldwide_gross),
totrev = sum(worldwide_gross),
roi = mean(roi),
number = n()

)

A tibble: 4 x 5
mpaa_rating meanrev totrev roi number
<chr> <dbl> <dbl> <dbl> <int>

1 G 189913348 13863674404 4.42 73
2 PG 147227422. 78324988428 4.64 532
3 PG-13 113477939. 120173136920 3.06 1059
4 R 63627931. 92451383780 4.42 1453

Are there fewer R-rated movies being produced? Not really. Let’s look at the overall number

128

of movies with any particular rating faceted by genre.

mov |>
count(mpaa_rating, genre) |>
ggplot(aes(mpaa_rating, n)) +
geom_col() +
facet_wrap(~genre) +
labs(x="MPAA Rating",

y="Number of films",
title="Number of films by rating for each genre")

Drama Horror

Action Adventure Comedy

G PG PG−13 R G PG PG−13 R

G PG PG−13 R
0

200

400

600

0

200

400

600

MPAA Rating

N
um

be
r

of
 fi

lm
s

Number of films by rating for each genre

What about the distributions of ratings?

mov |>
ggplot(aes(worldwide_gross)) +
geom_histogram() +
facet_wrap(~mpaa_rating) +
scale_x_log10(labels=dollar_format()) +
labs(x="Worldwide gross revenue",

y="Count",
title="Distribution of revenue by genre")

129

PG−13 R

G PG

$10,000 $1,000,000$100,000,000 $10,000 $1,000,000$100,000,000

0

50

100

150

0

50

100

150

Worldwide gross revenue

C
ou

nt

Distribution of revenue by genre

mov |>
ggplot(aes(mpaa_rating, worldwide_gross)) +
geom_boxplot(col="gray10", fill="gray90") +
scale_y_log10(labels=dollar_format()) +
labs(x="MPAA Rating", y="Worldwide gross revenue", title="Revenue by rating")

130

$10,000

$1,000,000

$100,000,000

G PG PG−13 R
MPAA Rating

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e

Revenue by rating

But, dont be fooled. Yes, on average G-rated movies look to perform better. But there aren’t
that many of them being produced, and they aren’t bringing in the lions share of revenue.

mov |>
count(mpaa_rating) |>
ggplot(aes(mpaa_rating, n)) +
geom_col() +
labs(x="MPAA Rating",

y="Count",
title="Total number of movies produced for each rating")

131

0

500

1000

1500

G PG PG−13 R
MPAA Rating

C
ou

nt

Total number of movies produced for each rating

mov |>
group_by(mpaa_rating) |>
summarize(total_revenue=sum(worldwide_gross)) |>
ggplot(aes(mpaa_rating, total_revenue)) +
geom_col() +
scale_y_continuous(label=dollar_format()) +
labs(x="MPAA Rating",

y="Total worldwide revenue",
title="Total worldwide revenue for each rating")

132

$0

$25,000,000,000

$50,000,000,000

$75,000,000,000

$100,000,000,000

$125,000,000,000

G PG PG−13 R
MPAA Rating

To
ta

l w
or

ld
w

id
e

re
ve

nu
e

Total worldwide revenue for each rating

6.2.4 Join to IMDB reviews

Look back at the dplyr reference on joins. An inner join lets you take two tables, match by a
common column (or columns), and return rows with an entry in both, returning all columns in
each table. I’ve downloaded all the data underlying IMDB (imdb.com/interfaces), and created
a reduced dataset having ratings for all the movies in IMDB. Let’s join the movie data we
have here with IMDB ratings. Download the data here: movies_imdb.csv. Once you’ve
downloaded it, read it in with read_csv():

imdb <- read_csv("data/movies_imdb.csv")
imdb

There are 177,519 movies in this dataset. There are 3,117 movies in the data we’ve already
been using. Let’s see how many we have that intersect in both:

movimdb <- inner_join(mov, imdb, by="movie")
movimdb

It turns out there are only 2,591 rows in the joined dataset. That’s because there were some
rows in mov that weren’t in imdb, and vice versa. Some of these are truly cases where there
isn’t an entry in one. Others are cases where it’s Star Wars Ep. I: The Phantom Menace in
one dataset but Star Wars: Episode I - The Phantom Menace in another, or Mr. & Mrs.

133

https://dplyr.tidyverse.org/reference/join.html
https://www.imdb.com/interfaces/
data/movies_imdb.csv

Smith versus Mr. and Mrs. Smith. Others might be ascii versus unicode text incompatibility,
e.g. the hyphen “-” versus the endash, “–”.

Now that you have the datasets joined, try a few more exercises!

Exercise 3

Separately for each MPAA rating, display the mean IMDB rating and mean number of
votes cast.

A tibble: 4 x 3
mpaa_rating meanimdb meanvotes
<chr> <dbl> <dbl>

1 G 6.54 132015.
2 PG 6.31 81841.
3 PG-13 6.25 102740.
4 R 6.58 107575.

Exercise 4

Do the same but for each movie genre.

A tibble: 5 x 3
genre meanimdb meanvotes
<chr> <dbl> <dbl>

1 Action 6.28 154681.
2 Adventure 6.27 130027.
3 Comedy 6.08 71288.
4 Drama 6.88 91101.
5 Horror 5.90 89890.

Exercise 5

Do the same but for each distributor, after lumping distributors in a mutate statement
to the top 4 distributors, as we’ve done before.

A tibble: 5 x 3
distributor meanimdb meanvotes
<fct> <dbl> <dbl>

1 Paramount Pictures 6.44 130546.
2 Sony Pictures 6.25 111913.
3 Universal 6.44 130028.
4 Warner Bros. 6.37 133997.
5 Other 6.46 86070.

134

Exercise 6

Create a boxplot visually summarizing what you saw in #1 and #2 above. That is, show
the distribution of IMDB ratings for each genre, but map the fill aesthetic for the boxplot
onto the MPAA rating. Here we can see that Dramas tend to get a higher IMDB rating
overall. Across most categories R rated movies fare better. We also see from this that
there are no Action or Horror movies rated G (understandably!). In fact, after this I
actually wanted to see what the “Horror” movies were having a PG rating that seemed
to do better than PG-13 or R rated Horror movies.

0.0

2.5

5.0

7.5

10.0

Action Adventure Comedy Drama Horror
Genre

IM
D

B
 R

at
in

g

MPAA Rating

G

PG

PG−13

R

IMDB Ratings by Genre by MPAA rating

movimdb |>
filter(mpaa_rating=="PG", genre=="Horror") |>
select(release_date, movie, worldwide_gross, imdb, votes)

A tibble: 5 x 5
release_date movie worldwide_gross imdb votes
<date> <chr> <dbl> <dbl> <dbl>

1 2015-10-16 Goosebumps 158905324 6.3 67744
2 1983-06-24 Twilight Zone: The Movie 29500000 6.5 29313
3 1982-06-04 Poltergeist 121706019 7.4 124178
4 1978-06-16 Jaws 2 208900376 5.7 61131
5 1975-06-20 Jaws 470700000 8 492525

135

Exercise 7

Create a scatter plot of worldwide gross revenue by IMDB rating, with the gross revenue
on a log scale. Color the points by genre. Add a trendline with method="lm".

$10,000

$1,000,000

$100,000,000

2 4 6 8
IMDB rating

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e

genre

Action

Adventure

Comedy

Drama

Horror

Worldwide gross revenue by IMDB rating

Exercise 8

Create the same plot, this time putting the number of votes on the x-axis, and make
both the x and y-axes log scale.

136

$10,000

$1,000,000

$100,000,000

100 10 000 1 000 000
Number of votes on IMDB

W
or

ld
w

id
e

gr
os

s
re

ve
nu

e

genre

Action

Adventure

Comedy

Drama

Horror

Worldwide gross revenue by number of IMDB votes cast

Exercise 9

Create the above plots, but this time plot the ROI instead of the gross revenue.

1e−03

1e−01

1e+01

2 4 6 8
IMDB rating

X
 R

et
ur

n
on

 in
ve

st
m

en
t

genre

Action

Adventure

Comedy

Drama

Horror

ROI by IMDB rating

137

$0.00

$0.10

$10.00

100 10 000 1 000 000
Number of votes on IMDB

X
 R

et
ur

n
on

 in
ve

st
m

en
t

genre

Action

Adventure

Comedy

Drama

Horror

ROI by number of IMDB votes cast

Exercise 10

Is there a relationship between the release date and the IMDB ratings or votes cast?
Surprisingly, there doesn’t appear to be one.

100

10 000

1 000 000

1980 1990 2000 2010 2020
Release date

N
um

be
r

of
 v

ot
es

 c
as

t o
n

IM
D

B

Number of votes by release date

138

0.0

2.5

5.0

7.5

10.0

1980 1990 2000 2010 2020
Release date

IM
D

B
 r

at
in

g
IMDB rating by release date

Exercise 11

Is there a relationship between the IMDB rating and the number of votes cast? It appears
so, at least as you get toward the movies with the very largest number of ratings.

0.0

2.5

5.0

7.5

10.0

100 10 000 1 000 000
Number of votes cast

IM
D

B
 r

at
in

g

IMDB rating by number of votes cast

139

Exercise 12

Looking at that above plot, I’m interested in (a) what are those movies with the largest
number of votes? and (b) what are those movies with at least 50,000 votes that have the
worst scores?

movimdb |>
arrange(desc(votes)) |>
head(10) |>
select(release_date, movie, roi, imdb, votes)

A tibble: 10 x 5
release_date movie roi imdb votes
<date> <chr> <dbl> <dbl> <dbl>

1 1994-09-23 The Shawshank Redemption 1.13 9.3 2009031
2 1999-10-15 Fight Club 1.55 8.8 1607508
3 1994-10-14 Pulp Fiction 26.6 8.9 1568242
4 1994-07-06 Forrest Gump 12.4 8.8 1529711
5 1999-03-31 The Matrix 7.13 8.7 1441344
6 2014-11-05 Interstellar 4.05 8.6 1221035
7 2005-06-15 Batman Begins 2.39 8.3 1149747
8 2009-08-21 Inglourious Basterds 4.53 8.3 1070753
9 1998-07-24 Saving Private Ryan 7.46 8.6 1058789
10 1993-12-15 Schindler's List 12.9 8.9 1036894

No surprises there. These are some of the most universally loved films ever made. Inter-
esting that the return on investment varies wildly (1.13x for the highest rated movie of
all time, up to 26x for Pulp Fiction, which had to pay for an all-star cast).

movimdb |>
filter(votes>50000) |>
arrange(imdb) |>
head(10) |>
select(release_date, movie, roi, imdb, votes)

A tibble: 10 x 5
release_date movie roi imdb votes
<date> <chr> <dbl> <dbl> <dbl>

1 2008-08-29 Disaster Movie 1.84 1.9 80918
2 2007-01-26 Epic Movie 4.34 2.3 96271
3 2006-02-17 Date Movie 4.26 2.8 53781
4 2011-11-11 Jack and Jill 1.91 3.3 68909

140

5 2004-07-23 Catwoman 0.821 3.3 98513
6 1997-06-20 Batman & Robin 1.91 3.7 212085
7 1997-06-13 Speed 2: Cruise Control 1.37 3.8 67296
8 1994-12-23 Street Fighter 2.84 3.8 58912
9 2015-02-13 Fifty Shades of Grey 14.3 4.1 269355
10 2010-07-01 The Last Airbender 2.13 4.1 133813

Interesting that several of these having such terrible reviews still have fairly high return
on investment (>14x for Fifty Shades of Grey!).

6.3 College Majors & Income

6.3.1 About the data

This is the data behind the FiveThirtyEight article, “The Economic Guide To Picking A
College Major”.

• All data is from American Community Survey 2010-2012 Public Use Microdata Series.
• Original data and more: http://www.census.gov/programs-surveys/acs/data/pums.html.
• Documentation: http://www.census.gov/programs-surveys/acs/technical-documentation/pums.html

Data Dictionary:

Header Description
Rank Rank by median earnings
Major_code Major code, FO1DP in ACS PUMS
Major Major description
Major_category Category of major from Carnevale et al
Total Total number of people with major
Sample_size Sample size (unweighted) of full-time, year-round ONLY (used for

earnings)
Men Male graduates
Women Female graduates
ShareWomen Women as share of total
Employed Number employed (ESR == 1 or 2)
Full_time Employed 35 hours or more
Part_time Employed less than 35 hours
Full_time_year_roundEmployed at least 50 weeks (WKW == 1) and at least 35 hours

(WKHP >= 35)
Unemployed Number unemployed (ESR == 3)

141

https://fivethirtyeight.com/features/the-economic-guide-to-picking-a-college-major/
https://fivethirtyeight.com/features/the-economic-guide-to-picking-a-college-major/

Header Description
Unemployment_rate Unemployed / (Unemployed + Employed)
Median Median earnings of full-time, year-round workers
P25th 25th percentile of earnigns
P75th 75th percentile of earnings
College_jobs Number with job requiring a college degree
Non_college_jobs Number with job not requiring a college degree
Low_wage_jobs Number in low-wage service jobs

6.3.2 Import and clean

If you haven’t already loaded the packages we need, go ahead and do that now.

library(tidyverse)
library(ggrepel)
library(scales)
library(lubridate)

Now, use the read_csv() function from readr (loaded when you load tidyverse), to read in
the grads.csv dataset into a new object called grads_raw.

Read in the raw data.

grads_raw <- read_csv("data/grads.csv")
grads_raw

Now clean it up a little bit. Remember, construct your pipeline one step at a time first. Once
you’re happy with the result, assign the results to a new object, grads.

• Make sure the data is arranged descending by Median income. It should be already, but
don’t make any assumptions.

• Make the Major sentence case so it’s not ALL CAPS. This uses the str_to_title()
function from the stringr package, loaded with tidyverse.

• Make it a factor variable with levels ordered according to median income.
• Do the same for Major_category – make it a factor variable with levels ordered according

to median income.
• Add a new variable, pct_college, that’s the proportion of graduates employed in a

job requiring a college degree. We’ll do some analysis with this later on to look at
under-employment.

• There’s one entry (“Military technologies”) that has no data about employment. This
new variable is therefore missing. Let’s remove this entry.

142

data/grads.csv

• There’s an entry with an unknown number of total majors, men, or women (“Food
Science”). Let’s remove it by removing anything with a missing Total number.

grads <- grads_raw |>
arrange(desc(Median)) |>
mutate(Major = str_to_title(Major)) |>
mutate(Major = fct_reorder(Major, Median)) |>
mutate(Major_category = fct_reorder(Major_category, Median)) |>
mutate(pct_college=College_jobs/(College_jobs+Non_college_jobs)) |>
filter(!is.na(pct_college)) |>
filter(!is.na(Total))

grads

6.3.3 Exploratory Data Analysis

Let’s start with an exercise.

Exercise 13

Remake table 1 from the FiveThirtyEight article.

• Use the select() function to get only the columns you care about.
• Use head(10) or tail(10) to show the first or last few rows.

Major Major_category Total Median
1 Petroleum Engineering Engineering 2339 110000
2 Mining And Mineral Engineering Engineering 756 75000
3 Metallurgical Engineering Engineering 856 73000
4 Naval Architecture And Marine Engineering Engineering 1258 70000
5 Chemical Engineering Engineering 32260 65000
6 Nuclear Engineering Engineering 2573 65000
7 Actuarial Science Business 3777 62000
8 Astronomy And Astrophysics Physical Sciences 1792 62000
9 Mechanical Engineering Engineering 91227 60000
10 Electrical Engineering Engineering 81527 60000

Major Major_category Total Median
1 Communication Disorders Sciences And Services Health 38279 28000
2 Early Childhood Education Education 37589 28000
3 Other Foreign Languages Humanities & Liberal Arts 11204 27500
4 Drama And Theater Arts Arts 43249 27000
5 Composition And Rhetoric Humanities & Liberal Arts 18953 27000

143

https://fivethirtyeight.com/features/the-economic-guide-to-picking-a-college-major/

6 Zoology Biology & Life Science 8409 26000
7 Educational Psychology Psychology & Social Work 2854 25000
8 Clinical Psychology Psychology & Social Work 2838 25000
9 Counseling Psychology Psychology & Social Work 4626 23400
10 Library Science Education 1098 22000

If you have the DT package installed, you can make an interactive table just like the one in
the FiveThirtyEight article.

library(DT)
grads |>
select(Major, Major_category, Total, Median) |>
datatable()

Show 10 entries Search:

Showing 1 to 10 of 171 entries

Previous 1 2 3 4 5 … 18 Next

1 Petroleum Engineering Engineering 2339 110000

2 Mining And Mineral Engineering Engineering 756 75000

3 Metallurgical Engineering Engineering 856 73000

4 Naval Architecture And Marine
Engineering Engineering 1258 70000

5 Chemical Engineering Engineering 32260 65000

6 Nuclear Engineering Engineering 2573 65000

7 Actuarial Science Business 3777 62000

8 Astronomy And Astrophysics Physical Sciences 1792 62000

9 Mechanical Engineering Engineering 91227 60000

10 Electrical Engineering Engineering 81527 60000

Major ▲▼ Major_category▲▼ Total▲▼ Median▲▼

144

https://fivethirtyeight.com/features/the-economic-guide-to-picking-a-college-major/

Let’s continue with more exploratory data analysis (EDA). Let’s plot median income by the
total number of majors. Is there a correlation between the number of people majoring in a
topic and that major’s median income? The expand_limits lets you put $0 on the Y-axis.
You might try making the x-axis scale logarithmic.

ggplot(grads, aes(Total, Median)) +
geom_point() +
geom_smooth(method="lm") +
expand_limits(y=0) +
scale_x_log10(label=scales::number_format()) +
scale_y_continuous(label=dollar_format()) +
labs(x="Total number of majors",

y="Median income",
title="Median income as a function of major popularity")

$0

$30,000

$60,000

$90,000

1 000 10 000 100 000
Total number of majors

M
ed

ia
n

in
co

m
e

Median income as a function of major popularity

You could run a regression analysis to see if there’s a trend.

lm(Median~(Total), data=grads) |> summary()

What categories of majors make more money than others? Let’s make a boxplot of median
income by major category. Let’s expand the limits to include 0 on the y-axis, and flip the
coordinate system.

145

grads |>
ggplot(aes(Major_category, Median)) +
geom_boxplot(aes(fill = Major_category)) +
expand_limits(y = 0) +
coord_flip() +
scale_y_continuous(labels = dollar_format()) +
theme(legend.position = "none") +
labs(x="Major category",

y="Median income",
title="Median income by major category",
caption="Adapted from @drob")

Psychology & Social Work
Arts

Humanities & Liberal Arts
Education

Agriculture & Natural Resources
Communications & Journalism

Health
Industrial Arts & Consumer Services

Interdisciplinary
Law & Public Policy

Biology & Life Science
Social Science

Physical Sciences
Business

Computers & Mathematics
Engineering

$0 $30,000 $60,000 $90,000
Median income

M
aj

or
 c

at
eg

or
y

Median income by major category

Adapted from @drob

What about unemployment rates? Let’s to the same thing here but before ggplot’ing, let’s
mutate the major category to relevel it descending by the unemployment rate. Therefore the
highest unemployment rate will be the first level of the factor. Let’s expand limits again, and
flip the coordinate system.

grads |>
mutate(Major_category=fct_reorder(Major_category, -Unemployment_rate)) |>
ggplot(aes(Major_category, Unemployment_rate, fill = Major_category)) +
geom_boxplot() +
expand_limits(y = 0) +

146

coord_flip() +
scale_y_continuous(labels = percent_format()) +
theme(legend.position = "none") +
labs(x="Major category",

y="Unemployment rate",
title="Unemployment rate by major category")

Social Science
Computers & Mathematics

Arts
Law & Public Policy

Humanities & Liberal Arts
Communications & Journalism

Interdisciplinary
Business

Biology & Life Science
Psychology & Social Work

Health
Engineering

Industrial Arts & Consumer Services
Physical Sciences

Agriculture & Natural Resources
Education

0% 5% 10% 15%
Unemployment rate

M
aj

or
 c

at
eg

or
y

Unemployment rate by major category

Most of these make sense except for the high median and large variability of “Computers &
Mathematics” category. Especially considering how these had the second highest median salary.
Let’s see what these were. Perhaps it was the larger number of Computer and Information
Systems, and Communication Technologies majors under this category that were dragging up
the Unemployment rate.

grads |>
filter(Major_category=="Computers & Mathematics") |>
select(Major, Median, Sample_size, Unemployment_rate)

Exercise 14

What about “underemployment?” Which majors have more students finding jobs re-
quiring college degrees? This time make a boxplot of each major category’s percentage
of majors having jobs requiring a college degree (pct_college). Do the same factor

147

reordering.

Business
Law & Public Policy

Communications & Journalism
Arts

Industrial Arts & Consumer Services
Agriculture & Natural Resources

Humanities & Liberal Arts
Social Science

Psychology & Social Work
Health

Interdisciplinary
Physical Sciences

Biology & Life Science
Computers & Mathematics

Engineering
Education

0% 25% 50% 75%
% of Major's Grads Employed in Jobs Requiring a College Degree

M
aj

or
 c

at
eg

or
y

Percent with Jobs Requiring College Degrees by Field of Study

Adapted from @backerman150

What are the highest earning majors? First, filter to majors having at least 100 samples to
use for income data. Try changing head(20) to tail(20) to get the lowest earners.

grads |>
filter(Sample_size >= 100) |>
head(20) |>
ggplot(aes(Major, Median, color = Major_category)) +
geom_point() +
geom_errorbar(aes(ymin = P25th, ymax = P75th)) +
expand_limits(y = 0) +
scale_y_continuous(labels = dollar_format()) +
coord_flip() +
labs(title = "What are the highest-earning majors?",

subtitle = "Top 20 majors with at least 100 graduates surveyed.\nBars represent the 25th to 75th percentile.",
x = "",
y = "Median salary of gradates",
caption="Adapted from @drob")

148

Accounting
Computer And Information Systems

Mathematics
Business Economics

Economics
Finance
Nursing

Civil Engineering
Construction Services

Miscellaneous Engineering
Operations Logistics And E−Commerce

Management Information Systems And Statistics
Computer Science

General Engineering
Industrial And Manufacturing Engineering

Aerospace Engineering
Computer Engineering
Electrical Engineering

Mechanical Engineering
Chemical Engineering

$0$20,000$40,000$60,000
Median salary of gradates

Major_category

Health

Industrial Arts & Consumer Services

Social Science

Business

Computers & Mathematics

Engineering

Top 20 majors with at least 100 graduates surveyed.
Bars represent the 25th to 75th percentile.

What are the highest−earning majors?

Adapted from @drob

How do the top majors break down by gender? This plot first gets the top 20 most popular
majors by total overall students. It reorders the “Major” variable by the total number of people
taking it. It then gathers the “Men” and “Women” variable into a column with the number of
men or women, with a key column called “Gender” indicating whether you’re looking at men
or women. It plots the total number in that major, and color-codes by gender.

grads |>
arrange(desc(Total)) |>
head(20) |>
mutate(Major = fct_reorder(Major, Total)) |>
gather(Gender, Number, Men, Women) |>
ggplot(aes(Major, Number, fill = Gender)) +
geom_col() +
coord_flip() +
scale_y_continuous(labels=number_format()) +
labs(x="", y="Total number of majors", title="Gender breakdown by top majors")

149

Commercial Art And Graphic Design
Sociology

Physical Fitness Parks Recreation And Leisure
Computer Science

Economics
History

General Education
Criminal Justice And Fire Protection

Elementary Education
Finance

Political Science And Government
English Language And Literature

Accounting
Marketing And Marketing Research

Nursing
Communications

General Business
Biology

Business Management And Administration
Psychology

0 100 000200 000300 000400 000
Total number of majors

Gender

Men

Women

Gender breakdown by top majors

What do earnings look like by gender? Let’s plot median salary by the Share of women in that
major, making the size of the point proportional to the number of students enrolled in that
major. Let’s also lump all the major categories together if they’re not one of the top four. I’m
also passing the label= aesthetic mapping. You’ll see why in a few moments. For now, there
is no geom that takes advantage of the label aesthetic.

p <- grads |>
mutate(Major_category = fct_lump(Major_category, 4)) |>
ggplot(aes(ShareWomen, Median, label=Major)) +
geom_point(aes(size=Total, color=Major_category)) +
geom_smooth(method="lm") +
expand_limits(y=0) +
scale_size_continuous(labels=number_format()) +
scale_y_continuous(labels=dollar_format()) +
scale_x_continuous(labels=percent_format()) +
labs(x="Proportion of women with major",

title="Median income by the proportion of women in each major")
p

150

$0

$30,000

$60,000

$90,000

25% 50% 75% 100%
Proportion of women with major

M
ed

ia
n

Major_category

Humanities & Liberal Arts

Education

Biology & Life Science

Engineering

Other

Total

100 000

200 000

300 000

Median income by the proportion of women in each major

If you have the plotly package installed, you can make an interactive graphic. Try hovering
over the points, or using your mouse to click+drag a box around a segment of the plot to zoom
in on.

library(plotly)
ggplotly(p)

151

25% 50% 75% 100%

$0

$30,000

$60,000

$90,000

Major_categ
Total

Humani

Educatio

Biology

Enginee

Other

Median income by the proportion of women in each major

Proportion of women with major

M
ed

ia
n

Let’s run a regression analysis to see if the proportion of women in the major is correlated with

152

salary. It looks like every percentage point increase in the proportion of women in a particular
major is correlated with a $23,650 decrease in salary.

lm(Median ~ ShareWomen, data = grads, weights = Sample_size) |>
summary()

Call:
lm(formula = Median ~ ShareWomen, data = grads, weights = Sample_size)

Weighted Residuals:
Min 1Q Median 3Q Max

-260544 -61278 -13324 33834 865216

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 52079 1441 36.147 <2e-16
ShareWomen -23660 2410 -9.816 <2e-16

Residual standard error: 123300 on 169 degrees of freedom
Multiple R-squared: 0.3631, Adjusted R-squared: 0.3594
F-statistic: 96.36 on 1 and 169 DF, p-value: < 2.2e-16

Let’s run a similar analysis looking at the median income as a function of the percentage of
majors getting a job requiring a college degree.

grads |>
mutate(Major_category = fct_lump(Major_category, 4)) |>
ggplot(aes(pct_college, Median)) +
geom_point(aes(size=Total, col=Major_category)) +
geom_smooth() +
scale_x_continuous(label=percent_format()) +
scale_y_continuous(label=dollar_format()) +
scale_size_continuous(label=number_format()) +
expand_limits(y=0) +
labs(x="% of Major's Grads Employed in Jobs Requiring a College Degree",

y="Median salary",
title="Median income by percent with jobs requiring a college degree",
caption="Adapted from @backerman150")

153

$0

$30,000

$60,000

$90,000

25% 50% 75%
% of Major's Grads Employed in Jobs Requiring a College Degree

M
ed

ia
n

sa
la

ry

Major_category

Humanities & Liberal Arts

Education

Biology & Life Science

Engineering

Other

Total

100 000

200 000

300 000

Median income by percent with jobs requiring a college degree

Adapted from @backerman150

Here’s Table 2 in the FiveThirtyEight piece. It uses the mutate_at function to run an arbi-
trary function on any number of variables defined in the vars() function. See the help for
?mutate_at to learn more.

library(DT)
grads |>
select(Major, Total, Median, P25th, P75th, Part_time, Non_college_jobs, Low_wage_jobs) |>
mutate_at(vars(Part_time, Non_college_jobs, Low_wage_jobs), funs(percent(./Total))) |>
mutate_at(vars(Median, P25th, P75th), funs(dollar)) |>
datatable()

154

https://fivethirtyeight.com/features/the-economic-guide-to-picking-a-college-major/

Show 10 entries Search:

Showing 1 to 10 of 171 entries Previous 1 2 3 4 5 … 18 Next

1 Petroleum
Engineering 2339 $110,000 $95,000 $125,000 11.5434% 15.5622% 8.2514%

2
Mining And
Mineral
Engineering

756 $75,000 $55,000 $90,000 22.4868% 33.9947% 6.6138%

3 Metallurgical
Engineering 856 $73,000 $50,000 $105,000 15.5374% 20.5607% 0.0000%

4

Naval
Architecture
And Marine
Engineering

1258 $70,000 $43,000 $80,000 11.9237% 8.1081% 0.0000%

5 Chemical
Engineering 32260 $65,000 $50,000 $75,000 16.0570% 13.7632% 3.0130%

6 Nuclear
Engineering 2573 $65,000 $50,000 $102,000 10.2604% 25.5344% 9.4831%

7 Actuarial
Science 3777 $62,000 $53,000 $72,000 7.8369% 8.3135% 6.8573%

8
Astronomy
And
Astrophysics

1792 $62,000 $31,500 $109,000 30.8594% 27.9018% 12.2768%

9 Mechanical
Engineering 91227 $60,000 $48,000 $70,000 14.3609% 17.9596% 3.5658%

10 Electrical
Engineering 81527 $60,000 $45,000 $72,000 15.5715% 13.3379% 3.8883%

Major ▲▼ Total▲▼ Median▲▼ P25th▲▼ P75th ▲▼ Part_time▲▼ Non_college_jobs▲▼ Low_wage_jobs▲▼

155

7 Reproducible Reporting with RMarkdown

Contemporary life science is plagued by reproducibility issues. This workshop covers some
of the barriers to reproducible research and how to start to address some of those problems
during the data management and analysis phases of the research life cycle. In this workshop
we will cover using R and dynamic document generation with RMarkdown and RStudio to
weave together reporting text with executable R code to automatically generate reports in the
form of PDF, Word, or HTML documents.

Spend a few minutes to learn a little bit about Markdown. All you really need to know is
that Markdown is a lightweight markup language that lets you create styled text (like bold,
italics, links, etc.) using a very lightweight plain-text syntax: (like **bold**, _italics_,
[links](https://blog.stephenturner.us/), etc.). The resulting text file can be ren-
dered into many downstream formats, like PDF (for printing) or HTML (websites).

1. (30 seconds) Read the summary paragraph on the Wikipedia page.
2. (1 minute) Bookmark and refer to this markdown reference: http://commonmark.org/h

elp/.
3. (5-10 minutes) Run through this 10-minute in-browser markdown tutorial: http://comm

onmark.org/help/tutorial/.
4. (5-10 minutes) Go to http://dillinger.io/, an in-browser Markdown editor, and play

around. Write a simple markdown document, and export it to HTML and/or PDF.
5. (10 minutes) See RStudio’s excellent documentation on Rmarkdown at http://rmar

kdown.rstudio.com/. Click “Getting Started” and watch the 1 minute video on the
Introduction page. Continue reading through each section here on the navigation bar to
the left (Introduction through Cheatsheets, and optionally download and print out the
cheat sheet). Finally, browse through the RMarkdown Gallery.

7.1 Who cares about reproducible research?

Science is plagued by reproducibility problems. Especially genomics!

• Scientists in the United States spend $28 billion each year on basic biomedical research
that cannot be repeated successfully.1

1Freedman, et al. “The economics of reproducibility in preclinical research.” PLoS Biol 13.6 (2015): e1002165.

156

https://blog.stephenturner.us/
https://en.wikipedia.org/wiki/Markdown
http://commonmark.org/help/
http://commonmark.org/help/
http://commonmark.org/help/tutorial/
http://commonmark.org/help/tutorial/
http://dillinger.io/
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/lesson-1.html
http://rmarkdown.rstudio.com/gallery.html
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002165

• A reproducibility study in psychology found that only 39 of 100 studies could be repro-
duced.2

• The Journal Nature on the issue of reproducibility:3

– “Nature and the Nature research journals will introduce editorial measures to
address the problem by improving the consistency and quality of reporting in
life-sciences articles… we will give more space to methods sections. We will
examine statistics more closely and encourage authors to be transparent,
for example by including their raw data.”

– Nature also released a checklist, unfortunately with wimpy computational check (see
#18).

• On microarray reproducibility:4

– 18 Nat. Genet. microarray experiments
– Less than 50% reproducible
– Problems:

∗ Missing data (38%)
∗ Missing software/hardware details (50%)
∗ Missing method/processing details (66%)

• NGS: run-of-the-mill variant calling (align, process, call variants):5

– 299 articles published in 2011 citing the 1000 Genomes project pilot publication
– Only 19 were NGS studies with similar design
– Only 10 used tools recommended by 1000G.
– Only 4 used full 1000G workflow (realignment & quality score recalibration).

Consider this figure:

2http://www.nature.com/news/first-results-from-psychology-s-largest-reproducibility-test-1.17433
3http://www.nature.com/news/reproducibility-1.17552
4Ioannidis, John PA, et al. “Repeatability of published microarray gene expression analyses.” Nature genetics

41.2 (2009): 149-155.
5Nekrutenko, Anton, and James Taylor. “Next-generation sequencing data interpretation: enhancing repro-

ducibility and accessibility.” Nature Reviews Genetics 13.9 (2012): 667-672.

157

http://www.nature.com/news/first-results-from-psychology-s-largest-reproducibility-test-1.17433
http://www.nature.com/news/first-results-from-psychology-s-largest-reproducibility-test-1.17433
http://www.nature.com/news/reproducibility-1.17552
http://www.nature.com/authors/policies/checklist.pdf
http://www.nature.com/news/first-results-from-psychology-s-largest-reproducibility-test-1.17433
http://www.nature.com/news/reproducibility-1.17552

How do we reproduce it? What do we need?

• The data.

– Data points themselves.
– Other metadata.

• The code.

– Should be readable.
– Comments in the code / well-documented so a normal person can figure out how it

runs.
– How were the trend lines drawn?
– What version of software / packages were used?

This kind of information is rarely available in scientific publications, but it’s now extraordinarly
easy to put this kind of information on the web.

158

Could I replicate Figure 1 from your last publication? If not, what would you and your
co-authors need to provide or do so I could replicate Figure 1 from your last publication?

As scientists we should aim for robust and reproducible research

• “Robust research is about doing small things that stack the deck in your favor to
prevent mistakes.”

—Vince Buffalo, author of Bioinformatics Data Skills (2015).
• Reproducible research can be repeated by other researchers with the same results.

7.1.1 Reproducibility is hard!

1. Genomics data is too large and high dimensional to easily inspect or visualize. Workflows
involve multiple steps and it’s hard to inspect every step.

2. Unlike in the wet lab, we don’t always know what to expect of our genomics data analysis.
3. It can be hard to distinguish good from bad results.
4. Scientific code is usually only run once to generate results for a publication, and is more

likely to contain silent bugs. (code that may produces unknowingly incorrect output
rather than stopping with an error message).

7.1.2 What’s in it for you?

Yeah, it takes a lot of effort to be robust and reproducible. However, it will make your life
(and science) easier!

• Most likely, you will have to re-run your analysis more than once.

• In the future, you or a collaborator may have to re-visit part of the project.
• Your most likely collaborator is your future self, and your past self doesn’t answer emails.
• You can make modularized parts of the project into re-useable tools for the future.

• Reproducibility makes you easier to work and collaborate with.

7.1.3 Some recommendations for reproducible research

1. Write code for humans, write data for computers.

• Code should be broken down into small chunks that may be re-used.

• Make names/variables consistent, distinctive and meaningful.

159

• Adopt a style be consistent.6
• Write concise and clear comments.

2. Make incremental changes. Work in small steps with frequent feedback. Use version
control. See http://swcarpentry.github.io/git-novice/ for resources on version control.

3. Make assertions and be loud, in code and in your methods. Add tests in your
code to make sure it’s doing what you expect. See http://software-carpentry.org/v4/t
est/ for resources on testing code.

4. Use existing libraries (packages) whenever possible. Don’t reinvent the wheel.
Use functions that have already been developed and tested by others.

5. Prevent catastrophe and help reproducibility by making your data read-only.
Rather than modifying your original data directly, always use a workflow that reads in
data, processes/modifies, then writes out intermediate and final files as necessary.

6. Encapsulate the full project into one directory that is supported with version
control. See: Noble, William Stafford. “A quick guide to organizing computational
biology projects.” PLoS Comput Biol 5.7 (2009): e1000424.

7. Release your code and data. Simple. Without your code and data, your research is
not reproducible.

• GitHub (https://github.com/) is a great place for storing, distributing, collaborat-
ing, and version-controlling code.

• RPubs (http://rpubs.com/) allows you to share dynamic documents you write in
RStudio online.

• Figshare (http://figshare.com/) and Zenodo (https://zenodo.org/) allow you to
upload any kind of research output, publishable or not, free and unlimited. Instantly
get permanently available, citable DOI for your research output.

• “Data/code is available upon request” or “Data/code is available at the lab’s website”
are completely unacceptable in the 21st century.

8. Write code that uses relative paths.

• Don’t use hard-coded absolute paths (i.e. /Users/stephen/Data/seq-data.csv or
C:\Stephen\Documents\Data\Project1\data.txt).

• Put the data in the project directory and reference it relative to where the code is,
e.g., data/gapminder.csv, etc.

9. Always set your seed. If you’re doing anything that involves random/monte-carlo
approaches, always use set.seed().

10. Document everything and use code as documentation.

• Document why you do something, not mechanics.
• Document your methods and workflows.
• Document the origin of all data in your project directory.

6http://adv-r.had.co.nz/Style.html

160

http://adv-r.had.co.nz/Style.html
http://swcarpentry.github.io/git-novice/
http://software-carpentry.org/v4/test/
http://software-carpentry.org/v4/test/
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000424
https://github.com/
http://rpubs.com/
http://figshare.com/
https://zenodo.org/
http://adv-r.had.co.nz/Style.html

• Document when and how you downloaded the data.
• Record data version info.
• Record software version info with session_info().
• Use dynamic documentation to make your life easier.

7.2 RMarkdown

RMarkdown is a variant of Markdown that lets you embed R code chunks that execute when
you compile the document. What, what? Markdown? Compile? What’s all this about?

7.2.1 Markdown

Ever heard of HTML? It’s what drives the internet. HTML is a markup language - that’s
what the ML stands for. The terminology evolved from “marking up” paper manuscripts by
editors, where the editor would instruct an author or typesetter how to render the resulting
text. Markup languages let you annotate text that you want to display with instructions
about how to display it.

I emphasize text because this is fundamentally different than word processing. When you use
MS Word, for example, you’re creating a special proprietary binary file (the .docx) file that
shows you how a document looks. By contrast, writing in a markup language like HTML or
Markdown, you’re writing plain old text, using a text editor. The toolchain used to render
the markup text into what you see on a display or in a PDF has always been and will always
bee free and open.

You can learn Markdown in about 5 minutes. Let’s open up a web-based Markdown editor
like http://dillinger.io/ or use a desktop Markdown editor like MarkdownPad (Windows) or
MacDown (Mac).

7.2.2 RMarkdown workflow

RMarkdown is an enhanced version of Markdown that lets you embed R code into the docu-
ment. When the document is compiled/rendered, the R code is executed by R, the output is
then automatically rendered as Markdown with the rest of the document. The Markdown is
then further processed to final output formats like HTML, PDF, DOCX, etc.

161

http://dillinger.io/
http://markdownpad.com/
http://macdown.uranusjr.com/

7.3 Authoring RMarkdown documents

Note: Before going any further, open up the options (Tools, Global Options),
click the RMarkdown section, and uncheck the box, “Show output inline for all
R Markdown documents.”

7.3.1 From scratch

First, open RStudio. Create a new project. Quit RStudio, then launch RStudio using the
project file (.Rproj) you just created.

Next, download the gapminder data from the data page. Put this file in your R project
directory. Maybe put it in a subdirectory called “data.” Importantly, now your code and data
will live in the same place.

Let’s create a bare-bones RMarkdown document that compiles to HTML. In RStudio, select
File, New File, R Markdown…. Don’t worry about the title and author fields. When the
new document launches, select everything then delete it. Let’s author an RMarkdown file from
scratch. Save it as fromscratch.Rmd.

Introduction

This is my first RMarkdown document!

Let's embed some R code

Let's load the **Gapminder** data:

```{r}
library(dplyr)
library(readr)
gm <- read_csv('data/gapminder.csv')

162

data.html


head(gm)
```

The mean life expectancy is `r mean(gm$lifeExp)` years.

The years surveyed in this data include: `r unique(gm$year)`.

Session Information

```{r}
sessionInfo()
```

Hit the Knit HTML button in the editor window. You should see the rendered document
pop up.

So let’s break that down to see exactly what happened there. Recall the RMarkdown Workflow
shown above. You start with an RMarkdown document (Rmd). When you hit the Knit HTML
button, The knitr R package parses through your source document and executes all the R
code chunks defined by the R code chunk blocks. The source code itself and the results are
then turned back into regular markdown, inserted into an intermediate markdown file (.md),
and finally rendered into HTML by Pandoc.

Try this. Instead of using the button, load the knitr package and just knit the document to
markdown format. Run this in the console.

library(knitr)
knit("fromscratch.Rmd")

Now, open up that regular markdown file and take a look.

Introduction

This is my first RMarkdown document!

Let's embed some R code

Let's load the **Gapminder** data:

```r

163

http://pandoc.org/


library(dplyr)
library(readr)
gm <- read_csv("data/gapminder.csv")
head(gm)
```

```
## country continent year lifeExp pop gdpPercap
## 1 Afghanistan Asia 1952 28.801 8425333 779.4453
## 2 Afghanistan Asia 1957 30.332 9240934 820.8530
## 3 Afghanistan Asia 1962 31.997 10267083 853.1007
## 4 Afghanistan Asia 1967 34.020 11537966 836.1971
## 5 Afghanistan Asia 1972 36.088 13079460 739.9811
## 6 Afghanistan Asia 1977 38.438 14880372 786.1134
```

The mean life expectancy is 59.4744394 years.

The years surveyed in this data include: 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007.

7.3.2 From a template with YAML metadata

Go ahead and start a new R Markdown document. Fill in some title and author information.

This is going to put a YAML header in the file that looks something like this:

title: "Gapminder Analysis"
author: "Stephen Turner"
date: "January 1, 2017"
output: html_document

The stuff between the three ---s is metadata. You can read more about what kind of metadata
can be included in the RMarkdown documentation. Try clicking the little wrench icon and
setting some options, like including a table of contents and figure captions. Notice how the
metadata front matter changes.

title: "Gapminder analysis"
author: "Stephen Turner"

164

http://rmarkdown.rstudio.com/

date: "January 1, 2017"
output:
html_document:

fig_caption: yes
toc: yes

Now, delete everything in that document below the metadata header and paste in what we
had written before (above). Save this document under a different name (rmdwithmeta.Rmd for
example). You’ll now see that your HTML document takes the metadata and makes a nicely
formatted title.

Let’s add a plot in there. Open up a new R chunk with this:

```{r, fig.cap='Life Exp vs GDP'}
library(ggplot2)
ggplot(gm, aes(gdpPercap, lifeExp)) + geom_point()
```

Using RStudio you can fiddle around with different ways to make the graphic and keep the
one you want. Maybe it looks like this:

```{r, fig.cap='Life Exp vs GDP'}
library(ggplot2)
ggplot(gm, aes(gdpPercap, lifeExp)) +
geom_point() +
scale_x_log10() +
aes(col=continent)

```

7.3.3 Chunk options

You can modify the behavior of an R chunk with options. Options are passed in after a comma
on the fence, as shown below.

```{r optionalChunkName, echo=TRUE, results='hide'}
# R code here
```

Some commonly used options include:

165

http://yihui.name/knitr/options/

• echo: (TRUE by default) whether to include R source code in the output file.
• results takes several possible values:

– markup (the default) takes the result of the R evaluation and turns it into markdown
that is rendered as usual.

– hide will hide results.
– hold will hold all the output pieces and push them to the end of a chunk. Useful if

you’re running commands that result in lots of little pieces of output in the same
chunk.

– asis writes the raw results from R directly into the document. Only really useful
for tables.

• include: (TRUE by default) if this is set to FALSE the R code is still evaluated, but
neither the code nor the results are returned in the output document.

• fig.width, fig.height: used to control the size of graphics in the output.

Try modifying your first R chunk to use different values for echo, results, and include.

```{r}
gm <- read.csv('data/gapminder.csv')
head(gm)
tail(gm)
```

See the full list of options here: http://yihui.name/knitr/options/. There are lots!

A special note about caching: The cache= option is automatically set to FALSE. That is, every
time you render the Rmd, all the R code is run again from scratch. If you use cache=TRUE,
for this chunk, knitr will save the results of the evaluation into a directory that you specify.
When you re-render the document, knitr will first check if there are previously cached results
under the cache directory before really evaluating the chunk; if cached results exist and this
code chunk has not been changed since last run (use MD5 sum to verify), the cached results
will be (lazy-) loaded, otherwise new cache will be built; if a cached chunk depends on other
chunks (see the dependson option) and any one of these chunks has changed, this chunk must
be forcibly updated (old cache will be purged). See the documentation for caching.

7.3.4 Tables

The knitr package that runs the RMarkdown document in the background also has a function
called kable that helps with printing tables nicely. It’s only useful when you set echo=FALSE
and results='asis'. Try this.

166

http://yihui.name/knitr/options/
http://yihui.name/knitr/demo/cache/
http://yihui.name/knitr/


```{r}
head(gm)
```

Versus this:

```{r, results='asis'}
library(knitr)
kable(head(gm))
```

7.3.5 Changing output formats

Now try this. If you were successfully able to get a LaTeX distribution installed, you can
render this document as a PDF instead of HTML. Try changing the line in the metadata
from html_document to pdf_document. Notice how the Knit HTML button in RStudio now
changes to Knit PDF. Try it. If you didn’t get a LaTeX engine installed this won’t work. Go
back to the setup instructions after class to give this a try.

7.4 Distributing Analyses: Rpubs

RPubs.com is a free service from RStudio that allows you to seamlessly publish the results of
your R analyses online. Sign up for an account at RPubs.com, then sign in on your browser.

Make sure your RMarkdown metadata is set to render to HTML rather than PDF. Render
the document. Now notice the little Publish button in the HTML viewer pane. Click this.
Sign in when asked, and give your document a name (usually the same name as the title of
your Rmd).

Here are a few examples of documents I’ve published:

• http://rpubs.com/turnersd/daily_show_guests: Analysis of every guest who’s ever
been on The Daily Show with Jon Stewart.

• http://rpubs.com/turnersd/twoaxes: How to plot two different tracks of data with one
axis on the left and one axis on the right.

• http://rpubs.com/turnersd/anscombe: Analysis of Anscombe’s Quartet data.

Note how RPubs doesn’t share your code! RPubs is a great way to share your analysis
but doesn’t let you share the source code. This is a huge barrier to reproducibility. There are
plenty of ways to do this. One way is to go to gist.github.com and upload your code as a text
file, then link back to the gist in your republished RPubs document.

167

http://rpubs.com/
http://rpubs.com/
http://rpubs.com/turnersd/daily_show_guests
http://rpubs.com/turnersd/twoaxes
http://rpubs.com/turnersd/anscombe
https://gist.github.com

Part II

Electives

168

8 Essential statistics

This chapter provides hands-on instruction and exercises covering basic statistical analysis in
R. This will cover descriptive statistics, t-tests, linear models, chi-square, clustering, dimen-
sionality reduction, and resampling strategies. We will also cover methods for “tidying” model
results for downstream visualization and summarization.

Handouts: Download and print out these handouts and bring them to class:

• Cheat sheet
• Exercises handout

8.1 Our data: NHANES

8.1.1 About NHANES

The data we’re going to work with comes from the National Health and Nutrition Examination
Survey (NHANES) program at the CDC. You can read a lot more about NHANES on the
CDC’s website or Wikipedia. NHANES is a research program designed to assess the health and
nutritional status of adults and children in the United States. The survey is one of the only to
combine both survey questions and physical examinations. It began in the 1960s and since 1999
examines a nationally representative sample of about 5,000 people each year. The NHANES
interview includes demographic, socioeconomic, dietary, and health-related questions. The
physical exam includes medical, dental, and physiological measurements, as well as several
standard laboratory tests. NHANES is used to determine the prevalence of major diseases
and risk factors for those diseases. NHANES data are also the basis for national standards
for measurements like height, weight, and blood pressure. Data from this survey is used in
epidemiology studies and health sciences research, which help develop public health policy,
direct and design health programs and services, and expand the health knowledge for the
Nation.

We are using a small slice of this data. We’re only using a handful of variables from the
2011-2012 survey years on about 5,000 individuals. The CDC uses a sampling strategy to
purposefully oversample certain subpopulations like racial minorities. Naive analysis of the
original NHANES data can lead to mistaken conclusions because the percentages of people from
each racial group in the data are different from general population. The 5,000 individuals here

169

http://www.cdc.gov/nchs/nhanes/
https://en.wikipedia.org/wiki/National_Health_and_Nutrition_Examination_Survey
http://www.cdc.gov/nchs/data/series/sr_02/sr02_162.pdf

are resampled from the larger NHANES study population to undo these oversampling effects,
so you can treat this as if it were a simple random sample from the American population.

You can download the data here: nhanes.csv. There’s also a data dictionary here:
nhanes_dd.csv that lists and describes each variable in our NHANES dataset. This table
is copied below.

Variable Definition
id A unique sample identifier
Gender Gender (sex) of study participant coded as male or female
Age Age in years at screening of study participant. Note: Subjects 80 years or

older were recorded as 80.
Race Reported race of study participant, including non-Hispanic Asian category:

Mexican, Hispanic, White, Black, Asian, or Other. Not availale for 2009-10.
Education Educational level of study participant Reported for participants aged 20

years or older. One of 8thGrade, 9-11thGrade, HighSchool, SomeCollege, or
CollegeGrad.

MaritalStatus Marital status of study participant. Reported for participants aged 20 years
or older. One of Married, Widowed, Divorced, Separated, NeverMarried, or
LivePartner (living with partner).

RelationshipStatusSimplification of MaritalStatus, coded as Committed if MaritalStatus is
Married or LivePartner, and Single otherwise.

Insured Indicates whether the individual is covered by health insurance.
Income Numerical version of HHIncome derived from the middle income in each

category
Poverty A ratio of family income to poverty guidelines. Smaller numbers indicate

more poverty
HomeRooms How many rooms are in home of study participant (counting kitchen but

not bathroom). 13 rooms = 13 or more rooms.
HomeOwn One of Home, Rent, or Other indicating whether the home of study

participant or someone in their family is owned, rented or occupied by some
other arrangement.

Work Indicates whether the individual is current working or not.
Weight Weight in kg
Height Standing height in cm. Reported for participants aged 2 years or older.
BMI Body mass index (weight/height2 in kg/m2). Reported for participants

aged 2 years or older.
Pulse 60 second pulse rate
BPSys Combined systolic blood pressure reading, following the procedure outlined

for BPXSAR.
BPDia Combined diastolic blood pressure reading, following the procedure outlined

for BPXDAR.

170

data/nhanes.csv
data/nhanes_dd.csv

Variable Definition
Testosterone Testerone total (ng/dL). Reported for participants aged 6 years or older.

Not available for 2009-2010.
HDLChol Direct HDL cholesterol in mmol/L. Reported for participants aged 6 years

or older.
TotChol Total HDL cholesterol in mmol/L. Reported for participants aged 6 years or

older.
Diabetes Study participant told by a doctor or health professional that they have

diabetes. Reported for participants aged 1 year or older as Yes or No.
DiabetesAge Age of study participant when first told they had diabetes. Reported for

participants aged 1 year or older.
nPregnancies How many times participant has been pregnant. Reported for female

participants aged 20 years or older.
nBabies How many of participants deliveries resulted in live births. Reported for

female participants aged 20 years or older.
SleepHrsNight Self-reported number of hours study participant usually gets at night on

weekdays or workdays. Reported for participants aged 16 years and older.
PhysActive Participant does moderate or vigorous-intensity sports, fitness or

recreational activities (Yes or No). Reported for participants 12 years or
older.

PhysActiveDays Number of days in a typical week that participant does moderate or
vigorous-intensity activity. Reported for participants 12 years or older.

AlcoholDay Average number of drinks consumed on days that participant drank
alcoholic beverages. Reported for participants aged 18 years or older.

AlcoholYear Estimated number of days over the past year that participant drank
alcoholic beverages. Reported for participants aged 18 years or older.

SmokingStatus Smoking status: Current Former or Never.

8.1.2 Import & inspect

First, let’s load the dplyr and readr libraries.

library(readr)
library(dplyr)

If you see a warning that looks like this: Error in library(dplyr) : there is no package
called 'dplyr' (or similar with readr), then you don’t have the package installed correctly.
See the (Appendix A)

Now, let’s actually load the data. When we load data we assign it to a variable just like any
other, and we can choose a name for that data. Since we’re going to be referring to this data

171

a lot, let’s give it a short easy name to type. I’m going to call it nh. Once we’ve loaded it we
can type the name of the object itself (nh) to see it printed to the screen.

nh <- read_csv(file="data/nhanes.csv")
nh

A tibble: 5,000 x 32
id Gender Age Race Education MaritalStatus RelationshipStatus Insured

<dbl> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 62163 male 14 Asian <NA> <NA> <NA> Yes
2 62172 female 43 Black High Sch~ NeverMarried Single Yes
3 62174 male 80 White College ~ Married Committed Yes
4 62174 male 80 White College ~ Married Committed Yes
5 62175 male 5 White <NA> <NA> <NA> Yes
6 62176 female 34 White College ~ Married Committed Yes
7 62178 male 80 White High Sch~ Widowed Single Yes
8 62180 male 35 White College ~ Married Committed Yes
9 62186 female 17 Black <NA> <NA> <NA> Yes

10 62190 female 15 Mexican <NA> <NA> <NA> Yes
i 4,990 more rows
i 24 more variables: Income <dbl>, Poverty <dbl>, HomeRooms <dbl>,
HomeOwn <chr>, Work <chr>, Weight <dbl>, Height <dbl>, BMI <dbl>,
Pulse <dbl>, BPSys <dbl>, BPDia <dbl>, Testosterone <dbl>, HDLChol <dbl>,
TotChol <dbl>, Diabetes <chr>, DiabetesAge <dbl>, nPregnancies <dbl>,
nBabies <dbl>, SleepHrsNight <dbl>, PhysActive <chr>, PhysActiveDays <dbl>,
AlcoholDay <dbl>, AlcoholYear <dbl>, SmokingStatus <chr>

Take a look at that output. The nice thing about loading dplyr and reading data with readr
functions is that data are displayed in a much more friendly way. This dataset has 5,000 rows
and 32 columns. When you import/convert data this way and try to display the object in the
console, instead of trying to display all 5,000 rows, you’ll only see about 10 by default. Also, if
you have so many columns that the data would wrap off the edge of your screen, those columns
will not be displayed, but you’ll see at the bottom of the output which, if any, columns were
hidden from view.

A note on characters versus factors: One thing that you immediately notice
is that all the categorical variables are read in as character data types. This data
type is used for storing strings of text, for example, IDs, names, descriptive text,
etc. There’s another related data type called factors. Factor variables are used
to represent categorical variables with two or more levels, e.g., “male” or “female”
for Gender, or “Single” versus “Committed” for RelationshipStatus. For the most
part, statistical analysis treats these two data types the same. It’s often easier to

172

leave categorical variables as characters. However, in some cases you may get a
warning message alerting you that a character variable was converted into a factor
variable during analysis. Generally, these warnings are nothing to worry about.
You can, if you like, convert individual variables to factor variables, or simply use
dplyr’s mutate_if to convert all character vectors to factor variables:

nh <- nh |> mutate_if(is.character, as.factor)
nh

Now just take a look at just a few columns that are now factors. Remember, you can look at
individual variables with the mydataframe$specificVariable syntax.

nh$RelationshipStatus
nh$Race
levels(nh$Race)

If you want to see the whole dataset, there are two ways to do this. First, you can click on the
name of the data.frame in the Environment panel in RStudio. Or you could use the View()
function (with a capital V).

View(nh)

Recall several built-in functions that are useful for working with data frames.

• Content:
– head(): shows the first few rows
– tail(): shows the last few rows

• Size:
– dim(): returns a 2-element vector with the number of rows in the first element, and

the number of columns as the second element (the dimensions of the object)
– nrow(): returns the number of rows
– ncol(): returns the number of columns

• Summary:
– colnames() (or just names()): returns the column names
– glimpse() (from dplyr): Returns a glimpse of your data, telling you the structure

of the dataset and information about the class, length and content of each column

head(nh)
tail(nh)
dim(nh)
names(nh)

173

glimpse(nh)

8.2 Descriptive statistics

We can access individual variables within a data frame using the $ operator, e.g.,
mydataframe$specificVariable. Let’s print out all the Race values in the data. Let’s then
see what are the unique values of each. Then let’s calculate the mean, median, and range of
the Age variable.

Display all Race values
nh$Race

Get the unique values of Race
unique(nh$Race)
length(unique(nh$Race))
Do the same thing the dplyr way
nh$Race |> unique()
nh$Race |> unique() |> length()

Age mean, median, range
mean(nh$Age)
median(nh$Age)
range(nh$Age)

You could also do the last few operations using dplyr, but remember, this returns a single-row,
single-column tibble, not a single scalar value like the above. This is only really useful in the
context of grouping and summarizing.

Compute the mean age
nh |>
summarize(mean(Age))

Now grouped by other variables
nh |>
group_by(Gender, Race) |>
summarize(mean(Age))

The summary() function (note, this is different from dplyr’s summarize()) works differently
depending on which kind of object you pass to it. If you run summary() on a data frame, you
get some very basic summary statistics on each variable in the data.

174

summary(nh)

8.2.1 Missing data

Let’s try taking the mean of a different variable, either the dplyr way or the simpler $ way.

the dplyr way: returns a single-row single-column tibble/dataframe
nh |> summarize(mean(Income))

returns a single value
mean(nh$Income)

What happened there? NA indicates missing data. Take a look at the Income variable.

Look at just the Income variable
nh$Income

Or view the dataset
View(nh)

Notice that there are lots of missing values for Income. Trying to get the mean a bunch
of observations with some missing data returns a missing value by default. This is almost
universally the case with all summary statistics – a single NA will cause the summary to return
NA. Now look at the help for ?mean. Notice the na.rm argument. This is a logical (i.e., TRUE or
FALSE) value indicating whether or not missing values should be removed prior to computing
the mean. By default, it’s set to FALSE. Now try it again.

mean(nh$Income, na.rm=TRUE)

[1] 57078

The is.na() function tells you if a value is missing. Get the sum() of that vector, which adds
up all the TRUEs to tell you how many of the values are missing.

is.na(nh$Income)
sum(is.na(nh$Income))

Now, let’s talk about exploratory data analysis (EDA).

175

8.2.2 EDA

It’s always worth examining your data visually before you start any statistical analysis or
hypothesis testing. We could spend an entire day on exploratory data analysis. The data
visualization section (Chapter 5) covers this in much broader detail. Here we’ll just mention
a few of the big ones: histograms and scatterplots.

8.2.2.1 Histograms

We can learn a lot from the data just looking at the value distributions of particular variables.
Let’s make some histograms with ggplot2. Looking at BMI shows a few extreme outliers.
Looking at weight initially shows us that the units are probably in kg. Replotting that in
lbs with more bins shows a clear bimodal distribution. Are there kids in this data? The age
distribution shows us the answer is yes.

library(ggplot2)
ggplot(nh, aes(BMI)) + geom_histogram(bins=30)

0

200

400

600

20 40 60 80
BMI

co
un

t

ggplot(nh, aes(Weight)) + geom_histogram(bins=30)

176

https://en.wikipedia.org/wiki/Exploratory_data_analysis

0

200

400

600

0 50 100 150 200
Weight

co
un

t

In pounds, more bins
ggplot(nh, aes(Weight*2.2)) + geom_histogram(bins=80)

0

50

100

150

200

0 100 200 300 400
Weight * 2.2

co
un

t

177

ggplot(nh, aes(Age)) + geom_histogram(bins=30)

0

50

100

150

200

250

0 20 40 60 80
Age

co
un

t

8.2.2.2 Scatterplots

Let’s look at how a few different variables relate to each other. E.g., height and weight:

ggplot(nh, aes(Height, Weight, col=Gender)) + geom_point()

178

0

50

100

150

200

100 125 150 175 200
Height

W
ei

gh
t Gender

female
male

Let’s filter out all the kids, draw trend lines using a linear model:

nh |>
filter(Age>=18) |>
ggplot(aes(Height, Weight, col=Gender)) +

geom_point() +
geom_smooth(method="lm")

179

50

100

150

200

140 160 180 200
Height

W
ei

gh
t Gender

female

male

Check out the data visualization section (Chapter 5) for much more on this topic.

Exercise 1

What’s the mean 60-second pulse rate for all participants in the data?

[1] 73.6

Exercise 2

What’s the range of values for diastolic blood pressure in all participants? (Hint: see help
for min(), max(), and range() functions, e.g., enter ?range without the parentheses to
get help).

[1] 0 116

Exercise 3

What are the median, lower, and upper quartiles for the age of all participants? (Hint:
see help for median, or better yet, quantile).

0% 25% 50% 75% 100%
0 17 36 54 80

180

Exercise 4

What’s the variance and standard deviation for income among all participants?

[1] 1.12e+09

[1] 33490

8.3 Continuous variables

8.3.1 T-tests

First let’s create a new dataset from nh called nha that only has adults. To prevent us from
making any mistakes downstream, let’s remove the nh object.

nha <- filter(nh, Age>=18)
rm(nh)
View(nha)

Let’s do a few two-sample t-tests to test for differences in means between two groups. The
function for a t-test is t.test(). See the help for ?t.test. We’ll be using the forumla method.
The usage is t.test(response~group, data=myDataFrame).

1. Are there differences in age for males versus females in this dataset?
2. Does BMI differ between diabetics and non-diabetics?
3. Do single or married/cohabitating people drink more alcohol? Is this relationship signif-

icant?

t.test(Age~Gender, data=nha)

Welch Two Sample t-test

data: Age by Gender
t = 2, df = 3697, p-value = 0.06
alternative hypothesis: true difference in means between group female and group male is not equal to 0
95 percent confidence interval:
-0.0278 2.2219
sample estimates:
mean in group female mean in group male

47.1 46.0

181

t.test(BMI~Diabetes, data=nha)

Welch Two Sample t-test

data: BMI by Diabetes
t = -11, df = 407, p-value <2e-16
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-5.56 -3.92
sample estimates:
mean in group No mean in group Yes

28.1 32.8

t.test(AlcoholYear~RelationshipStatus, data=nha)

Welch Two Sample t-test

data: AlcoholYear by RelationshipStatus
t = 5, df = 2675, p-value = 6e-08
alternative hypothesis: true difference in means between group Committed and group Single is not equal to 0
95 percent confidence interval:
13.1 27.8
sample estimates:
mean in group Committed mean in group Single

83.9 63.5

See the heading, Welch Two Sample t-test, and notice that the degrees of freedom might not be
what we expected based on our sample size. Now look at the help for ?t.test again, and look
at the var.equal argument, which is by default set to FALSE. One of the assumptions of the
t-test is homoscedasticity, or homogeneity of variance. This assumes that the variance in the
outcome (e.g., BMI) is identical across both levels of the predictor (diabetic vs non-diabetic).
Since this is rarely the case, the t-test defaults to using the Welch correction, which is a more
reliable version of the t-test when the homoscedasticity assumption is violated.

A note on one-tailed versus two-tailed tests: A two-tailed test is almost
always more appropriate. The hypothesis you’re testing here is spelled out in the
results (“alternative hypothesis: true difference in means is not equal to 0”). If the
p-value is very low, you can reject the null hypothesis that there’s no difference in

182

https://en.wikipedia.org/wiki/Homoscedasticity
https://en.wikipedia.org/wiki/Welch%27s_t-test

means. Because you typically don’t know a priori whether the difference in means
will be positive or negative (e.g., we don’t know a priori whether Single people
would be expected to drink more or less than those in a committed relationship),
we want to do the two-tailed test. However, if we only wanted to test a very specific
directionality of effect, we could use a one-tailed test and specify which direction
we expect. This is more powerful if we “get it right”, but much less powerful for the
opposite effect. Notice how the p-value changes depending on how we specify the
hypothesis. Again, the two-tailed test is almost always more appropriate.

Two tailed
t.test(AlcoholYear~RelationshipStatus, data=nha)

Difference in means is >0 (committed drink more)
t.test(AlcoholYear~RelationshipStatus, data=nha, alternative="greater")

Difference in means is <0 (committed drink less)
t.test(AlcoholYear~RelationshipStatus, data=nha, alternative="less")

A note on paired versus unpaired t-tests: The t-test we performed here was
an unpaired test. Here the males and females are different people. The diabetics
and nondiabetics are different samples. The single and committed individuals are
completely independent, separate observations. In this case, an unpaired test is
appropriate. An alternative design might be when data is derived from samples
who have been measured at two different time points or locations, e.g., before
versus after treatment, left versus right hand, etc. In this case, a paired t-test
would be more appropriate. A paired test takes into consideration the intra and
inter-subject variability, and is more powerful than the unpaired test. See the help
for ?t.test for more information on how to do this.

8.3.2 Wilcoxon test

Another assumption of the t-test is that data is normally distributed. Looking at the histogram
for AlcoholYear shows that this data clearly isn’t.

ggplot(nha, aes(AlcoholYear)) + geom_histogram()

183

0

250

500

750

1000

0 100 200 300
AlcoholYear

co
un

t

The Wilcoxon rank-sum test (a.k.a. Mann-Whitney U test) is a nonparametric test of differ-
ences in mean that does not require normally distributed data. When data is perfectly normal,
the t-test is uniformly more powerful. But when this assumption is violated, the t-test is
unreliable. This test is called in a similar way as the t-test.

wilcox.test(AlcoholYear~RelationshipStatus, data=nha)

Wilcoxon rank sum test with continuity correction

data: AlcoholYear by RelationshipStatus
W = 1e+06, p-value = 2e-04
alternative hypothesis: true location shift is not equal to 0

The results are still significant, but much less than the p-value reported for the (incorrect)
t-test above. Also note in the help for ?wilcox.test that there’s a paired option here too.

8.3.3 Linear models

Analysis of variance and linear modeling are complex topics that deserve an entire
semester dedicated to theory, design, and interpretation. A very good resource is
An Introduction to Statistical Learning: with Applications in R by Gareth James,

184

https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1461471370/ref=sr_1_1?ie=UTF8&qid=1473087847&sr=8-1&keywords=introduction+statistical+learning&tag=gettgenedone-20

Daniela Witten, Trevor Hastie and Robert Tibshirani. The PDF of the book and
all the R code used throughout are available free on the author’s website. What
follows is a necessary over-simplification with more focus on implementation, and
less on theory and design.

Where t-tests and their nonparametric substitutes are used for assessing the differences in
means between two groups, ANOVA is used to assess the significance of differences in means
between multiple groups. In fact, a t-test is just a specific case of ANOVA when you only have
two groups. And both t-tests and ANOVA are just specific cases of linear regression, where
you’re trying to fit a model describing how a continuous outcome (e.g., BMI) changes with some
predictor variable (e.g., diabetic status, race, age, etc.). The distinction is largely semantic
– with a linear model you’re asking, “do levels of a categorical variable affect the response?”
where with ANOVA or t-tests you’re asking, “does the mean response differ between levels of
a categorical variable?”

Let’s examine the relationship between BMI and relationship status (RelationshipStatus was
derived from MaritalStatus, coded as Committed if MaritalStatus is Married or LivePartner,
and Single otherwise). Let’s first do this with a t-test, and for now, let’s assume that the
variances between groups are equal.

t.test(BMI~RelationshipStatus, data=nha, var.equal=TRUE)

Two Sample t-test

data: BMI by RelationshipStatus
t = -2, df = 3552, p-value = 0.1
alternative hypothesis: true difference in means between group Committed and group Single is not equal to 0
95 percent confidence interval:
-0.7782 0.0955
sample estimates:
mean in group Committed mean in group Single

28.5 28.9

It looks like single people have a very slightly higher BMI than those in a committed relation-
ship, but the magnitude of the difference is trivial, and the difference is not significant. Now,
let’s do the same test in a linear modeling framework. First, let’s create the fitted model and
store it in an object called fit.

fit <- lm(BMI~RelationshipStatus, data=nha)

You can display the object itself, but that isn’t too interesting. You can get the more famil-
iar ANOVA table by calling the anova() function on the fit object. More generally, the

185

http://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/

summary() function on a linear model object will tell you much more. (Note this is different
from dplyr’s summarize function).

fit

Call:
lm(formula = BMI ~ RelationshipStatus, data = nha)

Coefficients:
(Intercept) RelationshipStatusSingle

28.513 0.341

anova(fit)

Analysis of Variance Table

Response: BMI
Df Sum Sq Mean Sq F value Pr(>F)

RelationshipStatus 1 98 98.3 2.35 0.13
Residuals 3552 148819 41.9

summary(fit)

Call:
lm(formula = BMI ~ RelationshipStatus, data = nha)

Residuals:
Min 1Q Median 3Q Max

-12.81 -4.61 -0.95 3.29 52.09

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.513 0.139 205.44 <2e-16
RelationshipStatusSingle 0.341 0.223 1.53 0.13

Residual standard error: 6.47 on 3552 degrees of freedom
(153 observations deleted due to missingness)

Multiple R-squared: 0.00066, Adjusted R-squared: 0.000379
F-statistic: 2.35 on 1 and 3552 DF, p-value: 0.126

186

Go back and re-run the t-test assuming equal variances as we did before. Now notice a few
things:

t.test(BMI~RelationshipStatus, data=nha, var.equal=TRUE)

1. The p-values from all three tests (t-test, ANOVA, and linear regression) are all identical
(p=0.1256). This is because they’re all identical: a t-test is a specific case of ANOVA,
which is a specific case of linear regression. There may be some rounding error, but we’ll
talk about extracting the exact values from a model object later on.

2. The test statistics are all related. The t statistic from the t-test is 1.532, which is the
same as the t-statistic from the linear regression. If you square that, you get 2.347, the
F statistic from the ANOVA.

3. The t.test() output shows you the means for the two groups, Committed and Single.
Just displaying the fit object itself or running summary(fit) shows you the coefficients
for a linear model. Here, the model assumes the “baseline” RelationshipStatus level is
Committed, and that the intercept in a regression model (e.g., 𝛽0 in the model 𝑌 =
𝛽0 + 𝛽1𝑋) is the mean of the baseline group. Being Single results in an increase in BMI
of 0.3413. This is the 𝛽1 coefficient in the model. You can easily change the ordering
of the levels. See the help for ?factor, and check out the new forcats package, which
provides tools for manipulating categorical variables.

P-value computed on a t-statistic with 3552 degrees of freedom
(multiply times 2 because t-test is assuming two-tailed)
2*(1-pt(1.532, df=3552))

[1] 0.126

P-value computed on an F-test with 1 and 3552 degrees of freedom
1-pf(2.347, df1=1, df2=3552)

[1] 0.126

A note on dummy coding: If you have a 𝑘-level factor, R creates 𝑘 − 1 dummy
variables, or indicator variables, by default, using the alphabetically first level
as baseline. For example, the levels of RelationshipStatus are “Committed” and
“Single”. R creates a dummy variable called “RelationshipStatusSingle” that’s 0 if
you’re committed, and 1 if you’re Single. The linear model is saying for every unit
increase in RelationshipStatusSingle, i.e., going from committed to single, results
in a 0.314-unit increase in BMI. You can change the ordering of the factors to
change the interpretation of the model (e.g., treating Single as baseline and going
from Single to Committed). We’ll do this in the next section.

187

http://forcats.tidyverse.org/

8.3.4 ANOVA

Recap: t-tests are for assessing the differences in means between two groups. A t-test is a
specific case of ANOVA, which is a specific case of a linear model. Let’s run ANOVA, but this
time looking for differences in means between more than two groups.

Let’s look at the relationship between smoking status (Never, Former, or Current), and BMI.

fit <- lm(BMI~SmokingStatus, data=nha)
anova(fit)

Analysis of Variance Table

Response: BMI
Df Sum Sq Mean Sq F value Pr(>F)

SmokingStatus 2 1411 706 17 4.5e-08
Residuals 3553 147551 42

summary(fit)

Call:
lm(formula = BMI ~ SmokingStatus, data = nha)

Residuals:
Min 1Q Median 3Q Max

-12.56 -4.56 -1.06 3.32 51.74

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.391 0.245 111.97 < 2e-16
SmokingStatusFormer 1.774 0.329 5.39 7.6e-08
SmokingStatusNever 1.464 0.284 5.16 2.6e-07

Residual standard error: 6.44 on 3553 degrees of freedom
(151 observations deleted due to missingness)

Multiple R-squared: 0.00947, Adjusted R-squared: 0.00891
F-statistic: 17 on 2 and 3553 DF, p-value: 4.54e-08

The F-test on the ANOVA table tells us that there is a significant difference in means between
current, former, and never smokers (p=4.54 × 10−8). However, the linear model output might

188

not have been what we wanted. Because the default handling of categorical variables is to
treat the alphabetical first level as the baseline, “Current” smokers are treated as baseline,
and this mean becomes the intercept, and the coefficients on “Former” and “Never” describe
how those groups’ means differ from current smokers.

Back to dummy coding / indicator variables: SmokingStatus is “Current”, “Former”, and
“Never.” By default, R will create two indicator variables here that in tandem will explain this
variable.

Original SmokingStatus
Indicator:

SmokingStatusFormer Indicator: SmokingStatusNever
Current 0 0
Former 1 0
Never 0 1

What if we wanted “Never” smokers to be the baseline, followed by Former, then Current?
Have a look at ?factor to relevel the factor levels.

Look at nha$SmokingStatus
nha$SmokingStatus

What happens if we relevel it? Let's see what that looks like.
relevel(nha$SmokingStatus, ref="Never")

If we're happy with that, let's change the value of nha$SmokingStatus in place
nha$SmokingStatus <- relevel(nha$SmokingStatus, ref="Never")

Or we could do this the dplyr way
nha <- nha |>
mutate(SmokingStatus=relevel(SmokingStatus, ref="Never"))

Re-fit the model
fit <- lm(BMI~SmokingStatus, data=nha)

Optionally, show the ANOVA table
anova(fit)

Print the full model statistics
summary(fit)

189

Call:
lm(formula = BMI ~ SmokingStatus, data = nha)

Residuals:
Min 1Q Median 3Q Max

-12.56 -4.56 -1.06 3.32 51.74

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.856 0.144 200.60 < 2e-16
SmokingStatusCurrent -1.464 0.284 -5.16 2.6e-07
SmokingStatusFormer 0.309 0.263 1.17 0.24

Residual standard error: 6.44 on 3553 degrees of freedom
(151 observations deleted due to missingness)

Multiple R-squared: 0.00947, Adjusted R-squared: 0.00891
F-statistic: 17 on 2 and 3553 DF, p-value: 4.54e-08

Notice that the p-value on the ANOVA/regression didn’t change, but the coefficients did.
Never smokers are now treated as baseline. The intercept coefficient (28.856) is now the mean
for Never smokers. The SmokingStatusFormer coefficient of .309 shows the apparent increase
in BMI that former smokers have when compared to never smokers, but that difference is
not significant (p=.24). The SmokingStatusCurrent coefficient of -1.464 shows that current
smokers actually have a lower BMI than never smokers, and that this decrease is highly sig-
nificant.

Finally, you can do the typical post-hoc ANOVA procedures on the fit object. For example,
the TukeyHSD() function will run Tukey’s test (also known as Tukey’s range test, the Tukey
method, Tukey’s honest significance test, Tukey’s HSD test (honest significant difference), or
the Tukey-Kramer method). Tukey’s test computes all pairwise mean difference calculation,
comparing each group to each other group, identifying any difference between two groups that’s
greater than the standard error, while controlling the type I error for all multiple comparisons.
First run aov() (not anova()) on the fitted linear model object, then run TukeyHSD() on the
resulting analysis of variance fit.

TukeyHSD(aov(fit))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = fit)

190

https://en.wikipedia.org/wiki/Tukey%27s_range_test

$SmokingStatus
diff lwr upr p adj

Current-Never -1.464 -2.130 -0.799 0.000
Former-Never 0.309 -0.308 0.926 0.469
Former-Current 1.774 1.002 2.546 0.000

This shows that there isn’t much of a difference between former and never smokers, but that
both of these differ significantly from current smokers, who have significantly lower BMI.

Finally, let’s visualize the differences in means between these groups. The NA category, which
is omitted from the ANOVA, contains all the observations who have missing or non-recorded
Smoking Status.

ggplot(nha, aes(SmokingStatus, BMI)) + geom_boxplot() + theme_classic()

20

40

60

80

Never Current Former NA
SmokingStatus

B
M

I

8.3.5 Linear regression

Linear models are mathematical representations of the process that (we think) gave rise to
our data. The model seeks to explain the relationship between a variable of interest, our
Y, outcome, response, or dependent variable, and one or more X, predictor, or independent
variables. Previously we talked about t-tests or ANOVA in the context of a simple linear
regression model with only a single predictor variable, 𝑋:

191

𝑌 = 𝛽0 + 𝛽1𝑋

But you can have multiple predictors in a linear model that are all additive, accounting for
the effects of the others:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜖

• 𝑌 is the response
• 𝑋1 and 𝑋2 are the predictors
• 𝛽0 is the intercept, and 𝛽1, 𝛽2 etc are coefficients that describe what 1-unit changes in

𝑋1 and 𝑋2 do to the outcome variable 𝑌 .
• 𝜖 is random error. Our model will not perfectly predict 𝑌 . It will be off by some random

amount. We assume this amount is a random draw from a Normal distribution with
mean 0 and standard deviation 𝜎.

Building a linear model means we propose a linear model and then estimate the coefficients
and the variance of the error term. Above, this means estimating 𝛽0, 𝛽1, 𝛽2 and 𝜎. This is
what we do in R.

Let’s look at the relationship between height and weight.

fit <- lm(Weight~Height, data=nha)
summary(fit)

Call:
lm(formula = Weight ~ Height, data = nha)

Residuals:
Min 1Q Median 3Q Max

-40.34 -13.11 -2.66 9.31 127.97

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -73.71 5.08 -14.5 <2e-16
Height 0.92 0.03 30.6 <2e-16

Residual standard error: 18.6 on 3674 degrees of freedom
(31 observations deleted due to missingness)

Multiple R-squared: 0.203, Adjusted R-squared: 0.203
F-statistic: 938 on 1 and 3674 DF, p-value: <2e-16

192

The relationship is highly significant (P<2.2 × 10−16). The intercept term is not very useful
most of the time. Here it shows us what the value of Weight would be when Height=0, which
could never happen. The Height coefficient is meaningful – each one unit increase in height
results in a 0.92 increase in the corresponding unit of weight. Let’s visualize that relationship:

ggplot(nha, aes(x=Height, y=Weight)) + geom_point() + geom_smooth(method="lm")

50

100

150

200

140 160 180 200
Height

W
ei

gh
t

By default, this is only going to show the prediction over the range of the data. This is
important! You never want to try to extrapolate response variables outside of the range of
your predictor(s). For example, the linear model tells us that weight is -73.7kg when height
is zero. We can extend the predicted model / regression line past the lowest value of the data
down to height=0. The bands on the confidence interval tell us that the model is apparently
confident within the regions defined by the gray boundary. But this is silly – we would never
see a height of zero, and predicting past the range of the available training data is never a
good idea.

ggplot(nha, aes(x=Height, y=Weight)) +
geom_point() +
geom_smooth(method="lm", fullrange=TRUE) +
xlim(0, NA) +
ggtitle("Friends don't let friends extrapolate.")

193

0

100

200

0 50 100 150 200
Height

W
ei

gh
t

Friends don't let friends extrapolate.

8.3.6 Multiple regression

Finally, let’s do a multiple linear regression analysis, where we attempt to model the effect of
multiple predictor variables at once on some outcome. First, let’s look at the effect of physical
activity on testosterone levels. Let’s do this with a t-test and linear regression, showing that
you get the same results.

t.test(Testosterone~PhysActive, data=nha, var.equal=TRUE)

Two Sample t-test

data: Testosterone by PhysActive
t = -2, df = 3436, p-value = 0.02
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-34.81 -3.72
sample estimates:
mean in group No mean in group Yes

208 227

summary(lm(Testosterone~PhysActive, data=nha))

194

Call:
lm(formula = Testosterone ~ PhysActive, data = nha)

Residuals:
Min 1Q Median 3Q Max
-224 -196 -116 167 1588

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 207.56 5.87 35.34 <2e-16
PhysActiveYes 19.27 7.93 2.43 0.015

Residual standard error: 231 on 3436 degrees of freedom
(269 observations deleted due to missingness)

Multiple R-squared: 0.00172, Adjusted R-squared: 0.00142
F-statistic: 5.9 on 1 and 3436 DF, p-value: 0.0152

In both cases, the p-value is significant (p=0.01516), and the result suggest that increased
physical activity is associated with increased testosterone levels. Does increasing your physical
activity increase your testosterone levels? Or is it the other way – will increased testosterone
encourage more physical activity? Or is it none of the above – is the apparent relationship
between physical activity and testosterone levels only apparent because both are correlated
with yet a third, unaccounted for variable? Let’s throw Age into the model as well.

summary(lm(Testosterone~PhysActive+Age, data=nha))

Call:
lm(formula = Testosterone ~ PhysActive + Age, data = nha)

Residuals:
Min 1Q Median 3Q Max
-239 -197 -112 167 1598

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 247.883 13.085 18.94 < 2e-16
PhysActiveYes 13.674 8.081 1.69 0.09073
Age -0.800 0.232 -3.45 0.00057

Residual standard error: 231 on 3435 degrees of freedom

195

(269 observations deleted due to missingness)
Multiple R-squared: 0.00516, Adjusted R-squared: 0.00458
F-statistic: 8.9 on 2 and 3435 DF, p-value: 0.000139

This shows us that after accounting for age that the testosterone / physical activity link is
no longer significant. Every 1-year increase in age results in a highly significant decrease in
testosterone, and since increasing age is also likely associated with decreased physical activity,
perhaps age is the confounder that makes this relationship apparent.

Adding other predictors can also swing things the other way. We know that men have much
higher testosterone levels than females. Sex is probably the single best predictor of testosterone
levels in our dataset. By not accounting for this effect, our unaccounted-for variation remains
very high. By accounting for Gender, we now reduce the residual error in the model, and the
physical activity effect once again becomes significant. Also notice that our model fits much
better (higher R-squared), and is much more significant overall.

summary(lm(Testosterone ~ PhysActive+Age+Gender, data=nha))

Call:
lm(formula = Testosterone ~ PhysActive + Age + Gender, data = nha)

Residuals:
Min 1Q Median 3Q Max

-397.9 -31.0 -4.4 20.5 1400.9

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.693 7.573 6.17 7.8e-10
PhysActiveYes 9.275 4.462 2.08 0.038
Age -0.590 0.128 -4.60 4.3e-06
Gendermale 385.199 4.351 88.53 < 2e-16

Residual standard error: 128 on 3434 degrees of freedom
(269 observations deleted due to missingness)

Multiple R-squared: 0.697, Adjusted R-squared: 0.697
F-statistic: 2.63e+03 on 3 and 3434 DF, p-value: <2e-16

We’ve only looked at the summary() and anova() functions for extracting information from
an lm class object. There are several other accessor functions that can be used on a linear
model object. Check out the help page for each one of these to learn more.

196

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/summary.lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/anova.lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html

• coefficients()
• predict.lm()
• fitted.values()
• residuals()

Exercise 5

Is the average BMI different in single people versus those in a committed relationship?
Perform a t-test.

Exercise 6

The Work variable is coded “Looking” (n=159), “NotWorking” (n=1317), and “Working”
(n=2230).

• Fit a linear model of Income against Work. Assign this to an object called fit.
What does the fit object tell you when you display it directly?

• Run an anova() to get the ANOVA table. Is the model significant?
• Run a Tukey test to get the pairwise contrasts. (Hint: TukeyHSD() on aov() on

the fit). What do you conclude?
• Instead of thinking of this as ANOVA, think of it as a linear model. After you’ve

thought about it, get some summary() statistics on the fit. Do these results jive
with the ANOVA model?

Exercise 7

Examine the relationship between HDL cholesterol levels (HDLChol) and whether someone
has diabetes or not (Diabetes).

• Is there a difference in means between diabetics and nondiabetics? Perform a t-test
without a Welch correction (that is, assuming equal variances – see ?t.test for
help).

• Do the same analysis in a linear modeling framework.
• Does the relationship hold when adjusting for Weight?
• What about when adjusting for Weight, Age, Gender, PhysActive (whether some-

one participates in moderate or vigorous-intensity sports, fitness or recreational
activities, coded as yes/no). What is the effect of each of these explanatory vari-
ables?

197

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/coef.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/predict.lm.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/fitted.values.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/residuals.html

8.4 Discrete variables

Until now we’ve only discussed analyzing continuous outcomes / dependent variables. We’ve
tested for differences in means between two groups with t-tests, differences among means
between n groups with ANOVA, and more general relationships using linear regression. In
all of these cases, the dependent variable, i.e., the outcome, or 𝑌 variable, was continuous,
and usually normally distributed. What if our outcome variable is discrete, e.g., “Yes/No”,
“Mutant/WT”, “Case/Control”, etc.? Here we use a different set of procedures for assessing
significant associations.

8.4.1 Contingency tables

The xtabs() function is useful for creating contingency tables from categorical variables. Let’s
create a gender by diabetes status contingency table, and assign it to an object called xt. After
making the assignment, type the name of the object to view it.

xt <- xtabs(~Gender+Diabetes, data=nha)
xt

Diabetes
Gender No Yes
female 1692 164
male 1653 198

There are two useful functions, addmargins() and prop.table() that add more information
or manipulate how the data is displayed. By default, prop.table() will divide the number of
observations in each cell by the total. But you may want to specify which margin you want to
get proportions over. Let’s do this for the first (row) margin.

Add marginal totals
addmargins(xt)

Diabetes
Gender No Yes Sum
female 1692 164 1856
male 1653 198 1851
Sum 3345 362 3707

198

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/xtabs.html

Get the proportional table
prop.table(xt)

Diabetes
Gender No Yes
female 0.4564 0.0442
male 0.4459 0.0534

That wasn't really what we wanted.
Do this over the first (row) margin only.
prop.table(xt, margin=1)

Diabetes
Gender No Yes
female 0.9116 0.0884
male 0.8930 0.1070

Looks like men have slightly higher rates of diabetes than women. But is this significant?

The chi-square test is used to assess the independence of these two factors. That is, if the
null hypothesis that gender and diabetes are independent is true, the we would expect a
proportionally equal number of diabetics across each sex. Males seem to be at slightly higher
risk than females, but the difference is just short of statistically significant.

chisq.test(xt)

Pearson's Chi-squared test with Yates' continuity correction

data: xt
X-squared = 3, df = 1, p-value = 0.06

An alternative to the chi-square test is Fisher’s exact test. Rather than relying on a critical
value from a theoretical chi-square distribution, Fisher’s exact test calculates the exact proba-
bility of observing the contingency table as is. It’s especially useful when there are very small
n’s in one or more of the contingency table cells. Both the chi-square and Fisher’s exact test
give us p-values of approximately 0.06.

fisher.test(xt)

199

https://en.wikipedia.org/wiki/Fisher%27s_exact_test

Fisher's Exact Test for Count Data

data: xt
p-value = 0.06
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.988 1.547
sample estimates:
odds ratio

1.24

There’s a useful plot for visualizing contingency table data called a mosaic plot. Call the
mosaicplot() function on the contingency table object. Note this is a built-in plot, not a
ggplot2-style plot.

mosaicplot(xt, main=NA)

Gender

D
ia

be
te

s

female male

N
o

Ye
s

Let’s create a different contingency table, this time looking at the relationship between race
and whether the person had health insurance. Display the table with marginal totals.

xt <- xtabs(~Race+Insured, data=nha)
addmargins(xt)

Insured
Race No Yes Sum
Asian 46 169 215
Black 86 330 416
Hispanic 89 151 240

200

Mexican 147 141 288
Other 33 65 98
White 307 2141 2448
Sum 708 2997 3705

Let’s do the same thing as above, this time showing the proportion of people in each race
category having health insurance.

prop.table(xt, margin=1)

Insured
Race No Yes
Asian 0.214 0.786
Black 0.207 0.793
Hispanic 0.371 0.629
Mexican 0.510 0.490
Other 0.337 0.663
White 0.125 0.875

Now, let’s run a chi-square test for independence.

chisq.test(xt)

Pearson's Chi-squared test

data: xt
X-squared = 323, df = 5, p-value <2e-16

The result is highly significant. In fact, so significant, that the display rounds off the p-value to
something like < 2.2×10−16. If you look at the help for ?chisq.test you’ll see that displaying
the test only shows you summary information, but other components can be accessed. For
example, we can easily get the actual p-value, or the expected counts under the null hypothesis
of independence.

chisq.test(xt)$p.value

[1] 9.75e-68

201

https://stat.ethz.ch/R-manual/R-patched/library/stats/html/chisq.test.html

chisq.test(xt)$expected

Insured
Race No Yes
Asian 41.1 173.9
Black 79.5 336.5
Hispanic 45.9 194.1
Mexican 55.0 233.0
Other 18.7 79.3
White 467.8 1980.2

We can also make a mosaic plot similar to above:

mosaicplot(xt, main=NA)

Race

In
su

re
d

Asian Black Hispanic Mexican Other White

N
o

Ye
s

8.4.2 Logistic regression

(See slides)

What if we wanted to model the discrete outcome, e.g., whether someone is insured, against
several other variables, similar to how we did with multiple linear regression? We can’t use
linear regression because the outcome isn’t continuous – it’s binary, either Yes or No. For
this we’ll use logistic regression to model the log odds of binary response. That is, instead of
modeling the outcome variable, 𝑌 , directly against the inputs, we’ll model the log odds of the
outcome variable.

If 𝑝 is the probability that the individual is insured, then 𝑝
1−𝑝 is the odds that person is insured.

Then it follows that the linear model is expressed as:

202

https://en.wikipedia.org/wiki/Odds

𝑙𝑜𝑔(𝑝
1 − 𝑝) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘

Where 𝛽0 is the intercept, 𝛽1 is the increase in the odds of the outcome for every unit increase
in 𝑥1, and so on.

Logistic regression is a type of generalized linear model (GLM). We fit GLM models in R using
the glm() function. It works like the lm() function except we specify which GLM to fit using
the family argument. Logistic regression requires family=binomial.

The typical use looks like this:

mod <- glm(y ~ x, data=yourdata, family='binomial')
summary(mod)

Before we fit a logistic regression model let’s relevel the Race variable so that “White” is the
baseline. We saw above that people who identify as “White” have the highest rates of being
insured. When we run the logistic regression, we’ll get a separate coefficient (effect) for each
level of the factor variable(s) in the model, telling you the increased odds that that level has,
as compared to the baseline group.

#Look at Race. The default ordering is alphabetical
nha$Race

Let's relevel that where the group with the highest rate of insurance is "baseline"
relevel(nha$Race, ref="White")

If we're happy with that result, permanently change it
nha$Race <- relevel(nha$Race, ref="White")

Or do it the dplyr way
nha <- nha |>
mutate(Race=relevel(Race, ref="White"))

Now, let’s fit a logistic regression model assessing how the odds of being insured change with
different levels of race.

fit <- glm(Insured~Race, data=nha, family="binomial")
summary(fit)

Call:
glm(formula = Insured ~ Race, family = "binomial", data = nha)

203

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.942 0.061 31.82 < 2e-16
RaceAsian -0.641 0.177 -3.62 3e-04
RaceBlack -0.597 0.136 -4.41 1.1e-05
RaceHispanic -1.413 0.147 -9.62 < 2e-16
RaceMexican -1.984 0.133 -14.95 < 2e-16
RaceOther -1.264 0.222 -5.69 1.3e-08

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3614.6 on 3704 degrees of freedom
Residual deviance: 3336.6 on 3699 degrees of freedom
(2 observations deleted due to missingness)

AIC: 3349

Number of Fisher Scoring iterations: 4

The Estimate column shows the log of the odds ratio – how the log odds of having health
insurance changes at each level of race compared to White. The P-value for each coefficient
is on the far right. This shows that every other race has significantly less rates of health
insurance coverage. But, as in our multiple linear regression analysis above, are there other
important variables that we’re leaving out that could alter our conclusions? Lets add a few
more variables into the model to see if something else can explain the apparent Race-Insured
association. Let’s add a few things likely to be involved (Age and Income), and something
that’s probably irrelevant (hours slept at night).

fit <- glm(Insured ~ Age+Income+SleepHrsNight+Race, data=nha, family="binomial")
summary(fit)

Call:
glm(formula = Insured ~ Age + Income + SleepHrsNight + Race,

family = "binomial", data = nha)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.50e-01 2.92e-01 -1.20 0.230
Age 3.37e-02 2.95e-03 11.43 < 2e-16
Income 1.53e-05 1.54e-06 9.98 < 2e-16
SleepHrsNight -1.76e-02 3.52e-02 -0.50 0.616

204

RaceAsian -4.55e-01 2.03e-01 -2.24 0.025
RaceBlack -2.39e-01 1.54e-01 -1.55 0.120
RaceHispanic -1.01e+00 1.64e-01 -6.18 6.6e-10
RaceMexican -1.40e+00 1.48e-01 -9.47 < 2e-16
RaceOther -9.89e-01 2.42e-01 -4.08 4.5e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3284.3 on 3395 degrees of freedom
Residual deviance: 2815.0 on 3387 degrees of freedom
(311 observations deleted due to missingness)

AIC: 2833

Number of Fisher Scoring iterations: 5

A few things become apparent:

1. Age and income are both highly associated with whether someone is insured. Both of
these variables are highly significant (𝑃 < 2.2×10−16), and the coefficient (the Estimate
column) is positive, meaning that for each unit increase in one of these variables, the
odds of being insured increases by the corresponding amount.

2. Hours slept per night is not meaningful at all.
3. After accounting for age and income, several of the race-specific differences are no longer

statistically significant, but others remain so.
4. The absolute value of the test statistic (column called z value) can roughly be taken

as an estimate of the “importance” of that variable to the overall model. So, age and
income are the most important influences in this model; self-identifying as Hispanic or
Mexican are also very highly important, hours slept per night isn’t important at all, and
the other race categories fall somewhere in between.

There is much more to go into with logistic regression. This chapter only scratches the surface.
Missing from this chapter are things like regression diagnostics, model comparison approaches,
penalization, interpretation of model coefficients, fitting interaction effects, and much more.
Alan Agresti’s Categorical Data Analysis has long been considered the definitive text on this
topic. I also recommend Agresti’s Introduction to Categorical Data Analysis (a.k.a. “Agresti
lite”) for a gentler introduction.

Exercise 8

What’s the relationship between diabetes and participating in rigorous physical activity
or sports?

• Create a contingency table with Diabetes status in rows and physical activity status
in columns.

205

https://www.amazon.com/Categorical-Data-Analysis-Alan-Agresti/dp/0470463635/ref=sr_1_1?ie=UTF8&qid=1473180895&sr=8-1&keywords=categorical+data+analysis&tag=gettgenedone-20
https://www.amazon.com/Introduction-Categorical-Data-Analysis/dp/0471226181/ref=sr_1_3?ie=UTF8&qid=1473180895&sr=8-3&keywords=categorical+data+analysis&tag=gettgenedone-20

• Display that table with margins.
• Show the proportions of diabetics and nondiabetics, separately, who are physically

active or not.
• Is this relationship significant?
• Create a mosaic plot to visualize the relationship.

Exercise 9

Model the same association in a logistic regression framework to assess the risk of diabetes
using physical activity as a predictor.

• Fit a model with just physical activity as a predictor, and display a model summary.
• Add gender to the model, and show a summary.
• Continue adding weight and age to the model. What happens to the gender asso-

ciation?
• Continue and add income to the model. What happens to the original association

with physical activity?

8.5 Power & sample size

This is a necessarily short introduction to the concept of power and sample size calculations.
Statistical power, also sometimes called sensitivity, is defined as the probability that your test
correctly rejects the null hypothesis when the alternative hypothesis is true. That is, if there
really is an effect (difference in means, association between categorical variables, etc.), how
likely are you to be able to detect that effect at a given statistical significance level, given
certain assumptions. Generally there are a few moving pieces, and if you know all but one of
them, you can calculate what that last one is.

1. Power: How likely are you to detect the effect? (Usually like to see 80% or greater).
2. N: What is the sample size you have (or require)?
3. Effect size: How big is the difference in means, odds ratio, etc?

If we know we want 80% power to detect a certain magnitude of difference between groups,
we can calculate our required sample size. Or, if we know we can only collect 5 samples, we
can calculate how likely we are to detect a particular effect. Or, we can work to solve the last
one - if we want 80% power and we have 5 samples, what’s the smallest effect we can hope to
detect?

All of these questions require certain assumptions about the data and the testing procedure.
Which kind of test is being performed? What’s the true effect size (often unknown, or esti-
mated from preliminary data), what’s the standard deviation of samples that will be collected

206

https://en.wikipedia.org/wiki/Statistical_power

(often unknown, or estimated from preliminary data), what’s the level of statistical significance
needed (traditionally p<0.05, but must consider multiple testing corrections).

8.5.1 T-test power/N

The power.t.test() empirically estimates power or sample size of a t-test for differences in
means. If we have 20 samples in each of two groups (e.g., control versus treatment), and the
standard deviation for whatever we’re measuring is 2.3, and we’re expecting a true difference
in means between the groups of 2, what’s the power to detect this effect?

power.t.test(n=20, delta=2, sd=2.3)

Two-sample t test power calculation

n = 20
delta = 2

sd = 2.3
sig.level = 0.05

power = 0.764
alternative = two.sided

NOTE: n is number in *each* group

What’s the sample size we’d need to detect a difference of 0.8 given a standard deviation of
1.5, assuming we want 80% power?

power.t.test(power=.80, delta=.8, sd=1.5)

Two-sample t test power calculation

n = 56.2
delta = 0.8

sd = 1.5
sig.level = 0.05

power = 0.8
alternative = two.sided

NOTE: n is number in *each* group

207

8.5.2 Proportions power/N

What about a two-sample proportion test (e.g., chi-square test)? If we have two groups (control
and treatment), and we’re measuring some outcome (e.g., infected yes/no), and we know that
the proportion of infected controls is 80% but 20% in treated, what’s the power to detect this
effect in 5 samples per group?

power.prop.test(n=5, p1=0.8, p2=0.2)

Two-sample comparison of proportions power calculation

n = 5
p1 = 0.8
p2 = 0.2

sig.level = 0.05
power = 0.469

alternative = two.sided

NOTE: n is number in *each* group

How many samples would we need for 90% power?

power.prop.test(power=0.9, p1=0.8, p2=0.2)

Two-sample comparison of proportions power calculation

n = 12.4
p1 = 0.8
p2 = 0.2

sig.level = 0.05
power = 0.9

alternative = two.sided

NOTE: n is number in *each* group

Also check out the pwr package which has power calculation functions for other statistical
tests.

208

https://cran.r-project.org/web/packages/pwr/

Function Power calculations for
pwr.2p.test() Two proportions (equal n)
pwr.2p2n.test() Two proportions (unequal n)
pwr.anova.test() Balanced one way ANOVA
pwr.chisq.test() Chi-square test
pwr.f2.test() General linear model
pwr.p.test() Proportion (one sample)
pwr.r.test() Correlation
pwr.t.test() T-tests (one sample, 2 sample, paired)
pwr.t2n.test() T-test (two samples with unequal n)

Exercise 10

You’re doing a gene expression experiment. What’s your power to detect a 2-fold change
in a gene with a standard deviation of 0.7, given 3 samples? (Note - fold change is usually
given on the 𝑙𝑜𝑔2 scale, so a 2-fold change would be a delta of 1. That is, if the fold
change is 2x, then 𝑙𝑜𝑔2(2) = 1, and you should use 1 in the calculation, not 2).

[1] 0.271

Exercise 11

How many samples would you need to have 80% power to detect this effect?

[1] 8.76

Exercise 12

You’re doing a population genome-wide association study (GWAS) looking at the effect
of a SNP on disease X. Disease X has a baseline prevalence of 5% in the population, but
you suspect the SNP might increase the risk of disease X by 10% (this is typical for SNP
effects on common, complex diseases). Calculate the number of samples do you need
to have 80% power to detect this effect, given that you want a genome-wide statistical
significance of 𝑝 < 5 × 10−8 to account for multiple testing.1 (Hint, you can expressed
5 × 10−8 in R using 5e-8 instead of .00000005).

[1] 157589

1https://www.quora.com/Why-is-P-value-5x10-8-chosen-as-a-threshold-to-reach-genome-wide-significance

209

https://www.quora.com/Why-is-P-value-5x10-8-chosen-as-a-threshold-to-reach-genome-wide-significance

8.6 Tidying models

We spent a lot of time in previous chapters on tidy data, where each column is a variable
and each row is an observation. Tidy data is easy to filter observations based on values in a
column (e.g., we could get just adult males with filter(nha, Gender=="male" & Age>=18),
and easy to select particular variables/features of interest by their column name.

Even when we start with tidy data, we don’t end up with tidy models. The output from tests
like t.test or lm are not data.frames, and it’s difficult to get the information out of the model
object that we want. The broom package bridges this gap.

Depending on the type of model object you’re using, broom provides three methods that do
different kinds of tidying:

1. tidy: constructs a data frame that summarizes the model’s statistical findings like coef-
ficients and p-values.

2. augment: add columns to the original data that was modeled, like predictions and resid-
uals.

3. glance: construct a concise one-row summary of the model with information like 𝑅2

that are computed once for the entire model.

Let’s go back to our linear model example.

Try modeling Testosterone against Physical Activity, Age, and Gender.
fit <- lm(Testosterone~PhysActive+Age+Gender, data=nha)

See what that model looks like:
summary(fit)

210

https://github.com/dgrtwo/broom

Call:
lm(formula = Testosterone ~ PhysActive + Age + Gender, data = nha)

Residuals:
Min 1Q Median 3Q Max

-397.9 -31.0 -4.4 20.5 1400.9

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.693 7.573 6.17 7.8e-10
PhysActiveYes 9.275 4.462 2.08 0.038
Age -0.590 0.128 -4.60 4.3e-06
Gendermale 385.199 4.351 88.53 < 2e-16

Residual standard error: 128 on 3434 degrees of freedom
(269 observations deleted due to missingness)

Multiple R-squared: 0.697, Adjusted R-squared: 0.697
F-statistic: 2.63e+03 on 3 and 3434 DF, p-value: <2e-16

What if we wanted to pull out the coefficient for Age, or the P-value for PhysActive? It
gets pretty gross. We first have to coef(summary(lmfit)) to get a matrix of coefficients, the
terms are still stored in row names, and the column names are inconsistent with other packages
(e.g. Pr(>|t|) compared to p.value). Yuck!

coef(summary(fit))["Age", "Estimate"]

[1] -0.59

coef(summary(fit))["PhysActiveYes", "Pr(>|t|)"]

[1] 0.0377

Instead, you can use the tidy function, from the broom package, on the fit:

Install the package if you don't have it
install.packages("broom")

library(broom)
tidy(fit)

211

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 46.7 7.57 6.17 7.83e-10
2 PhysActiveYes 9.27 4.46 2.08 3.77e- 2
3 Age -0.590 0.128 -4.60 4.28e- 6
4 Gendermale 385. 4.35 88.5 0

This gives you a data.frame with all your model results. The row names have been moved into
a column called term, and the column names are simple and consistent (and can be accessed
using $). These can be manipulated with dplyr just like any other data frame.

tidy(fit) |>
filter(term!="(Intercept)") |>
select(term, p.value) |>
arrange(p.value)

A tibble: 3 x 2
term p.value
<chr> <dbl>

1 Gendermale 0
2 Age 0.00000428
3 PhysActiveYes 0.0377

Instead of viewing the coefficients, you might be interested in the fitted values and residuals for
each of the original points in the regression. For this, use augment, which augments the original
data with information from the model. New columns begins with a . (to avoid overwriting
any of the original columns).

Augment the original data
IF you get a warning about deprecated... purrr..., ignore. It's a bug that'll be fixed soon.
augment(fit) |> head()

A tibble: 6 x 11
.rownames Testosterone PhysActive Age Gender .fitted .resid .hat .sigma
<chr> <dbl> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 1 47.5 No 43 female 21.3 26.2 0.000989 128.
2 2 643. No 80 male 385. 258. 0.00185 127.
3 3 643. No 80 male 385. 258. 0.00185 127.
4 4 21.1 Yes 34 female 35.9 -14.8 0.000928 128.

212

5 5 563. No 80 male 385. 178. 0.00185 128.
6 6 402. No 35 male 411. -9.45 0.00117 128.
i 2 more variables: .cooksd <dbl>, .std.resid <dbl>

Plot residuals vs fitted values for males,
colored by Physical Activity, size scaled by age
augment(fit) |>
filter(Gender=="male") |>
ggplot(aes(.fitted, .resid, col=PhysActive, size=Age)) + geom_point()

0

500

1000

390 400 410 420 430
.fitted

.r
es

id

Age

20

40

60

80

PhysActive

No

Yes

Finally, several summary statistics are computed for the entire regression, such as 𝑅2 and the
F-statistic. These can be accessed with glance:

glance(fit)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.697 0.697 128. 2632. 0 3 -21545. 43100. 43130.
i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

213

The broom functions work on a pipe, so you can |> your model directly to any of the functions
like tidy(). Let’s tidy up our t-test:

t.test(AlcoholYear~RelationshipStatus, data=nha)

Welch Two Sample t-test

data: AlcoholYear by RelationshipStatus
t = 5.4315, df = 2674.8, p-value = 6.09e-08
alternative hypothesis: true difference in means between group Committed and group Single is not equal to 0
95 percent confidence interval:
13.05949 27.81603
sample estimates:
mean in group Committed mean in group Single

83.93416 63.49640

t.test(AlcoholYear~RelationshipStatus, data=nha) |> tidy()

A tibble: 1 x 10
estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 20.4 83.9 63.5 5.43 6.09e-8 2675. 13.1 27.8
i 2 more variables: method <chr>, alternative <chr>

…and our Mann-Whitney U test / Wilcoxon rank-sum test:

wilcox.test(AlcoholYear~RelationshipStatus, data=nha)

Wilcoxon rank sum test with continuity correction

data: AlcoholYear by RelationshipStatus
W = 1067954, p-value = 0.0001659
alternative hypothesis: true location shift is not equal to 0

wilcox.test(AlcoholYear~RelationshipStatus, data=nha) |> tidy()

214

A tibble: 1 x 4
statistic p.value method alternative

<dbl> <dbl> <chr> <chr>
1 1067954. 0.000166 Wilcoxon rank sum test with continuity correct~ two.sided

…and our Fisher’s exact test on the cross-tabulated data:

xtabs(~Gender+Diabetes, data=nha) |> fisher.test()

Fisher's Exact Test for Count Data

data: xtabs(~Gender + Diabetes, data = nha)
p-value = 0.05992
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9883143 1.5466373
sample estimates:
odds ratio
1.235728

xtabs(~Gender+Diabetes, data=nha) |> fisher.test() |> tidy()

A tibble: 1 x 6
estimate p.value conf.low conf.high method alternative

<dbl> <dbl> <dbl> <dbl> <chr> <chr>
1 1.24 0.0599 0.988 1.55 Fisher's Exact Test for Count~ two.sided

…and finally, a logistic regression model:

fit the model and summarize it the usual way
glmfit <- glm(Insured~Race, data=nha, family=binomial)
summary(glmfit)

Call:
glm(formula = Insured ~ Race, family = binomial, data = nha)

Coefficients:

215

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.94218 0.06103 31.825 < 2e-16
RaceAsian -0.64092 0.17715 -3.618 0.000297
RaceBlack -0.59744 0.13558 -4.406 1.05e-05
RaceHispanic -1.41354 0.14691 -9.622 < 2e-16
RaceMexican -1.98385 0.13274 -14.946 < 2e-16
RaceOther -1.26430 0.22229 -5.688 1.29e-08

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3614.6 on 3704 degrees of freedom
Residual deviance: 3336.6 on 3699 degrees of freedom
(2 observations deleted due to missingness)

AIC: 3348.6

Number of Fisher Scoring iterations: 4

tidy it up!
tidy(glmfit)

A tibble: 6 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 1.94 0.0610 31.8 2.96e-222
2 RaceAsian -0.641 0.177 -3.62 2.97e- 4
3 RaceBlack -0.597 0.136 -4.41 1.05e- 5
4 RaceHispanic -1.41 0.147 -9.62 6.47e- 22
5 RaceMexican -1.98 0.133 -14.9 1.66e- 50
6 RaceOther -1.26 0.222 -5.69 1.29e- 8

do whatever you want now
tidy(glmfit) |>
filter(term!="(Intercept)") |>
mutate(logp=-1*log10(p.value)) |>
ggplot(aes(term, logp)) + geom_bar(stat="identity") + coord_flip()

216

RaceAsian

RaceBlack

RaceHispanic

RaceMexican

RaceOther

0 10 20 30 40 50
logp

te
rm

Check out some of the other broom vignettes on CRAN, and also check out the biobroom
package on bioconductor for turning bioconductor objects and analytical results into tidy data
frames.

8.7 Additional topics & recommended reading

8.7.1 1. Batch effects

Batch effects are sources of technical variation introduced during an experiment, such as pro-
cessing with different reagents, handling by a different technician, sequencing on a different
flow cell, or processing samples in groups on different days. If these batch effects are strongly
confounded with the study variable of interest, they can call into question the validity of your
results, and in some cases, render collected data completely useless. The papers below discuss
batch effects and how they can be mitigated.

1. Chapter 5 of Scherer, Andreas. Batch effects and noise in microarray experiments:
sources and solutions. Vol. 868. John Wiley & Sons, 2009.

• Chapter 5 only: http://onlinelibrary.wiley.com/doi/10.1002/9780470685983.ch5/
pdf.

• Entire book: https://faculty.mu.edu.sa/public/uploads/1382673974.784197804707
41382.pdf.

217

https://cran.r-project.org/web/packages/broom/index.html
http://bioconductor.org/packages/release/bioc/html/biobroom.html
http://bioconductor.org/packages/release/bioc/html/biobroom.html
http://onlinelibrary.wiley.com/doi/10.1002/9780470685983.ch5/pdf
http://onlinelibrary.wiley.com/doi/10.1002/9780470685983.ch5/pdf
https://faculty.mu.edu.sa/public/uploads/1382673974.78419780470741382.pdf
https://faculty.mu.edu.sa/public/uploads/1382673974.78419780470741382.pdf

2. Leek, Jeffrey T., et al. “Tackling the widespread and critical impact of batch effects in
high-throughput data.” Nature Reviews Genetics 11.10 (2010): 733-739. Available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880143/.

8.7.2 2. What’s my n?

“What’s my n” isn’t always a straightforward question to answer, especially when it comes to
cell culture expriments. The post and article below go into some of these details.

1. Statistics for Experimental Biologists: “What is ‘n’ in cell culture experiments?” Avail-
able at http://labstats.net/articles/cell_culture_n.html.

2. Vaux, David L., Fiona Fidler, and Geoff Cumming. “Replicates and repeats—what is
the difference and is it significant?.” EMBO reports 13.4 (2012): 291-296. Available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321166/.

8.7.3 3. Technical versus biological replicates

Technical replicates involve taking multiple measurements on the same sample. Biological
replicates are different samples each with separate measurements/assays. While technical
replicates can help calibrate the precision of an instrument or assay, biological replicates are
necessary for statistical analysis to make inferences about a condition or treatment. Read the
paper and note below for more information on technical vs biological replication.

1. Blainey, Paul, Martin Krzywinski, and Naomi Altman. “Points of significance: replica-
tion.” Nature methods 11.9 (2014): 879-880. Available at http://rdcu.be/yguA.

2. Illumina Technical Note: “The Power of Replicates.” Available at https://www.illumina
.com/Documents/products/technotes/technote_power_replicates.pdf.

218

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880143/
http://labstats.net/articles/cell_culture_n.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3321166/
http://rdcu.be/yguA
https://www.illumina.com/Documents/products/technotes/technote_power_replicates.pdf
https://www.illumina.com/Documents/products/technotes/technote_power_replicates.pdf

9 Survival Analysis

This chapter will provide hands-on instruction and exercises covering survival analysis using R.
Some of the data to be used here will come from The Cancer Genome Atlas (TCGA), where
we may also cover programmatic access to TCGA through Bioconductor if time allows.

Handouts: Download and print out these handouts and bring them to class:

• Cheat sheet
• Background handout
• Exercises handout

9.1 Background

In the chapter on essential statistics (Chapter 8) we covered basic categorical data analysis –
comparing proportions (risks, rates, etc) between different groups using a chi-square or fisher
exact test, or logistic regression. For example, we looked at how the diabetes rate differed
between males and females. In this kind of analysis you implicitly assume that the rates are
constant over the period of the study, or as defined by the different groups you defined.

But, in longitudinal studies where you track samples or subjects from one time point (e.g.,
entry into a study, diagnosis, start of a treatment) until you observe some outcome event
(e.g., death, onset of disease, relapse), it doesn’t make sense to assume the rates are constant.
For example: the risk of death after heart surgery is highest immediately post-op, decreases
as the patient recovers, then rises slowly again as the patient ages. Or, recurrence rate of
different cancers varies highly over time, and depends on tumor genetics, treatment, and other
environmental factors.

9.1.1 Definitions

Survival analysis lets you analyze the rates of occurrence of events over time, without as-
suming the rates are constant. Generally, survival analysis lets you model the time until an

219

event occurs,1 or compare the time-to-event between different groups, or how time-to-event
correlates with quantitative variables.

The hazard is the instantaneous event (death) rate at a particular time point t. Survival
analysis doesn’t assume the hazard is constant over time. The cumulative hazard is the total
hazard experienced up to time t.

The survival function, is the probability an individual survives (or, the probability that the
event of interest does not occur) up to and including time t. It’s the probability that the event
(e.g., death) hasn’t occured yet. It looks like this, where 𝑇 is the time of death, and 𝑃𝑟(𝑇 > 𝑡)
is the probability that the time of death is greater than some time 𝑡. 𝑆 is a probability, so
0 ≤ 𝑆(𝑡) ≤ 1, since survival times are always positive (𝑇 ≥ 0).

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡)

The Kaplan-Meier curve illustrates the survival function. It’s a step function illustrating
the cumulative survival probability over time. The curve is horizontal over periods where no
event occurs, then drops vertically corresponding to a change in the survival function at each
time an event occurs.

Censoring is a type of missing data problem unique to survival analysis. This happens when
you track the sample/subject through the end of the study and the event never occurs. This
could also happen due to the sample/subject dropping out of the study for reasons other than
death, or some other loss to followup. The sample is censored in that you only know that the
individual survived up to the loss to followup, but you don’t know anything about survival
after that.2

Proportional hazards assumption: The main goal of survival analysis is to compare the
survival functions in different groups, e.g., leukemia patients as compared to cancer-free con-
trols. If you followed both groups until everyone died, both survival curves would end at 0%,
but one group might have survived on average a lot longer than the other group. Survival
analysis does this by comparing the hazard at different times over the observation period. Sur-
vival analysis doesn’t assume that the hazard is constant, but does assume that the ratio of
hazards between groups is constant over time.3 This class does not cover methods to deal with
non-proportional hazards, or interactions of covariates with the time to event.

1In the medical world, we typically think of survival analysis literally – tracking time until death. But, it’s
more general than that – survival analysis models time until an event occurs (any event). This might be
death of a biological organism. But it could also be the time until a hardware failure in a mechanical system,
time until recovery, time someone remains unemployed after losing a job, time until a ripe tomato is eaten
by a grazing deer, time until someone falls asleep in a workshop, etc. Survival analysis also goes by reliability
theory in engineering, duration analysis in economics, and event history analysis in sociology.

2This describes the most common type of censoring – right censoring. Left censoring less commonly occurs
when the “start” is unknown, such as when an initial diagnosis or exposure time is unknown.

3And, following the definitions above, assumes that the cumulative hazard ratio between two groups remains
constant over time.

220

Proportional hazards regression a.k.a. Cox regression is the most common approach
to assess the effect of different variables on survival.

9.1.2 Cox PH Model

Kaplan-Meier curves are good for visualizing differences in survival between two categorical
groups,4 but they don’t work well for assessing the effect of quantitative variables like age, gene
expression, leukocyte count, etc. Cox PH regression can assess the effect of both categorical
and continuous variables, and can model the effect of multiple variables at once.5

Cox PH regression models the natural log of the hazard at time t, denoted ℎ(𝑡), as a function
of the baseline hazard (ℎ0(𝑡)) (the hazard for an individual where all exposure variables are 0)
and multiple exposure variables 𝑥1, 𝑥1, ..., 𝑥𝑝. The form of the Cox PH model is:

𝑙𝑜𝑔(ℎ(𝑡)) = 𝑙𝑜𝑔(ℎ0(𝑡)) + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑝𝑥𝑝

If you exponentiate both sides of the equation, and limit the right hand side to just a sin-
gle categorical exposure variable (𝑥1) with two groups (𝑥1 = 1 for exposed and 𝑥1 = 0 for
unexposed), the equation becomes:

ℎ1(𝑡) = ℎ0(𝑡) × 𝑒𝛽1𝑥1

Rearranging that equation lets you estimate the hazard ratio, comparing the exposed to the
unexposed individuals at time t:

𝐻𝑅(𝑡) = ℎ1(𝑡)
ℎ0(𝑡) = 𝑒𝛽1

This model shows that the hazard ratio is 𝑒𝛽1, and remains constant over time t (hence
the name proportional hazards regression). The 𝛽 values are the regression coefficients that
are estimated from the model, and represent the 𝑙𝑜𝑔(𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜) for each unit increase
in the corresponding predictor variable. The interpretation of the hazards ratio depends on
the measurement scale of the predictor variable, but in simple terms, a positive coefficient
indicates worse survival and a negative coefficient indicates better survival for the variable in
question.

4And there’s a chi-square-like statistical test for these differences called the log-rank test that compare the
survival functions categorical groups.

5See the multiple regression section of the essential statistics section (Chapter 8).

221

https://en.wikipedia.org/wiki/Log-rank_test

9.2 Survival analysis in R

The core survival analysis functions are in the survival package. The survival package is one
of the few “core” packages that comes bundled with your basic R installation, so you probably
didn’t need to install.packages() it. But, you’ll need to load it like any other library when
you want to use it. We’ll also be using the dplyr package, so let’s load that too. Finally, we’ll
also want to load the survminer package, which provides much nicer Kaplan-Meier plots
out-of-the-box than what you get out of base graphics.

library(dplyr)
library(survival)
library(survminer)

The core functions we’ll use out of the survival package include:

• Surv(): Creates a survival object.
• survfit(): Fits a survival curve using either a formula, of from a previously fitted Cox

model.
• coxph(): Fits a Cox proportional hazards regression model.

Other optional functions you might use include:

• cox.zph(): Tests the proportional hazards assumption of a Cox regression model.
• survdiff(): Tests for differences in survival between two groups using a log-rank /

Mantel-Haenszel test.6

Surv() creates the response variable, and typical usage takes the time to event,7 and whether
or not the event occured (i.e., death vs censored). survfit() creates a survival curve that you
could then display or plot. coxph() implements the regression analysis, and models specified
the same way as in regular linear models, but using the coxph() function.

9.2.1 Getting started

We’re going to be using the built-in lung cancer dataset8 that ships with the survival package.
You can get some more information about the dataset by running ?lung. The help tells us
there are 10 variables in this data:

6Cox regression and the logrank test from survdiff are going to give you similar results most of the time. The
log-rank test is asking if survival curves differ significantly between two groups. Cox regression is asking
which of many categorical or continuous variables significantly affect survival.

7Surv() can also take start and stop times, to account for left censoring. See the help for ?Surv.
8Loprinzi et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North

Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7, 1994.

222

https://cran.r-project.org/web/packages/survival/
https://cran.rstudio.com/web/packages/survminer/index.html

library(survival)
?lung

1. inst: Institution code
2. time: Survival time in days
3. status: censoring status 1=censored, 2=dead
4. age: Age in years
5. sex: Male=1 Female=2
6. ph.ecog: ECOG performance score (0=good 5=dead)
7. ph.karno: Karnofsky performance score as rated by physician
8. pat.karno: Karnofsky performance score as rated by patient
9. meal.cal: Calories consumed at meals

10. wt.loss: Weight loss in last six months

You can access the data just by running lung, as if you had read in a dataset and called it
lung. You can operate on it just like any other data frame.

head(lung)
class(lung)
dim(lung)
View(lung)

Notice that lung is a plain data.frame object. You could see what it looks like as a tibble
(prints nicely, tells you the type of variable each column is). You could then reassign lung to
the as_tibble()-ified version.

as_tibble(lung)
lung <- as_tibble(lung)
lung

9.2.2 Survival Curves

Check out the help for ?Surv. This is the main function we’ll use to create the survival object.
You can play fast and loose with how you specify the arguments to Surv. The help tells you
that when there are two unnamed arguments, they will match time and event in that order.
This is the common shorthand you’ll often see for right-censored data. The alternative lets
you specify interval data, where you give it the start and end times (time and time2). If you
keep reading you’ll see how Surv tries to guess how you’re coding the status variable. It will
try to guess whether you’re using 0/1 or 1/2 to represent censored vs “dead”, respectively.9

9Where “dead” really refers to the occurance of the event (any event), not necessarily death.

223

Try creating a survival object called s, then display it. If you go back and head(lung) the
data, you can see how these are related. It’s a special type of vector that tells you both how
long the subject was tracked for, and whether or not the event occured or the sample was
censored (shown by the +).

s <- Surv(lung$time, lung$status)
class(s)

[1] "Surv"

s

[1] 306 455 1010+ 210 883 1022+ 310 361 218 166 170 654
[13] 728 71 567 144 613 707 61 88 301 81 624 371
[25] 394 520 574 118 390 12 473 26 533 107 53 122
[37] 814 965+ 93 731 460 153 433 145 583 95 303 519
[49] 643 765 735 189 53 246 689 65 5 132 687 345
[61] 444 223 175 60 163 65 208 821+ 428 230 840+ 305
[73] 11 132 226 426 705 363 11 176 791 95 196+ 167
[85] 806+ 284 641 147 740+ 163 655 239 88 245 588+ 30
[97] 179 310 477 166 559+ 450 364 107 177 156 529+ 11
[109] 429 351 15 181 283 201 524 13 212 524 288 363
[121] 442 199 550 54 558 207 92 60 551+ 543+ 293 202
[133] 353 511+ 267 511+ 371 387 457 337 201 404+ 222 62
[145] 458+ 356+ 353 163 31 340 229 444+ 315+ 182 156 329
[157] 364+ 291 179 376+ 384+ 268 292+ 142 413+ 266+ 194 320
[169] 181 285 301+ 348 197 382+ 303+ 296+ 180 186 145 269+
[181] 300+ 284+ 350 272+ 292+ 332+ 285 259+ 110 286 270 81
[193] 131 225+ 269 225+ 243+ 279+ 276+ 135
[reached getOption("max.print") -- omitted 28 entries]

head(lung)

A tibble: 6 x 10
inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15

224

4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0

Now, let’s fit a survival curve with the survfit() function. See the help for ?survfit.
Here we’ll create a simple survival curve that doesn’t consider any different groupings, so we’ll
specify just an intercept (e.g., ~1) in the formula that survfit expects. We can do what we
just did by “modeling” the survival object s we just created against an intercept only, but from
here out, we’ll just do this in one step by nesting the Surv() call within the survfit() call,
and similar to how we specify data for linear models with lm(), we’ll use the data= argument
to specify which data we’re using. Similarly, we can assign that to another object called sfit
(or whatever we wanted to call it).

survfit(s~1)

Call: survfit(formula = s ~ 1)

n events median 0.95LCL 0.95UCL
[1,] 228 165 310 285 363

survfit(Surv(time, status)~1, data=lung)

Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
[1,] 228 165 310 285 363

sfit <- survfit(Surv(time, status)~1, data=lung)
sfit

Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

n events median 0.95LCL 0.95UCL
[1,] 228 165 310 285 363

Now, that object itself isn’t very interesting. It’s more interesting to run summary on what it
creates. This will show a life table.

225

summary(sfit)

Call: survfit(formula = Surv(time, status) ~ 1, data = lung)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
5 228 1 0.9956 0.00438 0.9871 1.000

11 227 3 0.9825 0.00869 0.9656 1.000
12 224 1 0.9781 0.00970 0.9592 0.997
13 223 2 0.9693 0.01142 0.9472 0.992
15 221 1 0.9649 0.01219 0.9413 0.989
26 220 1 0.9605 0.01290 0.9356 0.986
30 219 1 0.9561 0.01356 0.9299 0.983
31 218 1 0.9518 0.01419 0.9243 0.980
53 217 2 0.9430 0.01536 0.9134 0.974
54 215 1 0.9386 0.01590 0.9079 0.970
59 214 1 0.9342 0.01642 0.9026 0.967
60 213 2 0.9254 0.01740 0.8920 0.960
61 211 1 0.9211 0.01786 0.8867 0.957
62 210 1 0.9167 0.01830 0.8815 0.953
65 209 2 0.9079 0.01915 0.8711 0.946
71 207 1 0.9035 0.01955 0.8660 0.943
79 206 1 0.8991 0.01995 0.8609 0.939
81 205 2 0.8904 0.02069 0.8507 0.932
88 203 2 0.8816 0.02140 0.8406 0.925
92 201 1 0.8772 0.02174 0.8356 0.921
93 199 1 0.8728 0.02207 0.8306 0.917
95 198 2 0.8640 0.02271 0.8206 0.910
105 196 1 0.8596 0.02302 0.8156 0.906
107 194 2 0.8507 0.02362 0.8056 0.898
110 192 1 0.8463 0.02391 0.8007 0.894
116 191 1 0.8418 0.02419 0.7957 0.891
118 190 1 0.8374 0.02446 0.7908 0.887
122 189 1 0.8330 0.02473 0.7859 0.883
[reached getOption("max.print") -- omitted 111 rows]

These tables show a row for each time point where either the event occured or a sample was
censored. It shows the number at risk (number still remaining), and the cumulative survival
at that instant.

What’s more interesting though is if we model something besides just an intercept. Let’s fit
survival curves separately by sex.

226

sfit <- survfit(Surv(time, status)~sex, data=lung)
sfit

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)

n events median 0.95LCL 0.95UCL
sex=1 138 112 270 212 310
sex=2 90 53 426 348 550

summary(sfit)

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)

sex=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
11 138 3 0.9783 0.0124 0.9542 1.000
12 135 1 0.9710 0.0143 0.9434 0.999
13 134 2 0.9565 0.0174 0.9231 0.991
15 132 1 0.9493 0.0187 0.9134 0.987
26 131 1 0.9420 0.0199 0.9038 0.982
30 130 1 0.9348 0.0210 0.8945 0.977
31 129 1 0.9275 0.0221 0.8853 0.972
53 128 2 0.9130 0.0240 0.8672 0.961
54 126 1 0.9058 0.0249 0.8583 0.956
59 125 1 0.8986 0.0257 0.8496 0.950
60 124 1 0.8913 0.0265 0.8409 0.945
65 123 2 0.8768 0.0280 0.8237 0.933
71 121 1 0.8696 0.0287 0.8152 0.928
81 120 1 0.8623 0.0293 0.8067 0.922
88 119 2 0.8478 0.0306 0.7900 0.910
92 117 1 0.8406 0.0312 0.7817 0.904
93 116 1 0.8333 0.0317 0.7734 0.898
95 115 1 0.8261 0.0323 0.7652 0.892
105 114 1 0.8188 0.0328 0.7570 0.886
107 113 1 0.8116 0.0333 0.7489 0.880
110 112 1 0.8043 0.0338 0.7408 0.873
116 111 1 0.7971 0.0342 0.7328 0.867
118 110 1 0.7899 0.0347 0.7247 0.861
131 109 1 0.7826 0.0351 0.7167 0.855
132 108 2 0.7681 0.0359 0.7008 0.842

227

135 106 1 0.7609 0.0363 0.6929 0.835
142 105 1 0.7536 0.0367 0.6851 0.829
144 104 1 0.7464 0.0370 0.6772 0.823
[reached getOption("max.print") -- omitted 71 rows]

sex=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI

5 90 1 0.9889 0.0110 0.9675 1.000
60 89 1 0.9778 0.0155 0.9478 1.000
61 88 1 0.9667 0.0189 0.9303 1.000
62 87 1 0.9556 0.0217 0.9139 0.999
79 86 1 0.9444 0.0241 0.8983 0.993
81 85 1 0.9333 0.0263 0.8832 0.986
95 83 1 0.9221 0.0283 0.8683 0.979
107 81 1 0.9107 0.0301 0.8535 0.972
122 80 1 0.8993 0.0318 0.8390 0.964
145 79 2 0.8766 0.0349 0.8108 0.948
153 77 1 0.8652 0.0362 0.7970 0.939
166 76 1 0.8538 0.0375 0.7834 0.931
167 75 1 0.8424 0.0387 0.7699 0.922
182 71 1 0.8305 0.0399 0.7559 0.913
186 70 1 0.8187 0.0411 0.7420 0.903
194 68 1 0.8066 0.0422 0.7280 0.894
199 67 1 0.7946 0.0432 0.7142 0.884
201 66 2 0.7705 0.0452 0.6869 0.864
208 62 1 0.7581 0.0461 0.6729 0.854
226 59 1 0.7452 0.0471 0.6584 0.843
239 57 1 0.7322 0.0480 0.6438 0.833
245 54 1 0.7186 0.0490 0.6287 0.821
268 51 1 0.7045 0.0501 0.6129 0.810
285 47 1 0.6895 0.0512 0.5962 0.798
293 45 1 0.6742 0.0523 0.5791 0.785
305 43 1 0.6585 0.0534 0.5618 0.772
310 42 1 0.6428 0.0544 0.5447 0.759
340 39 1 0.6264 0.0554 0.5267 0.745
[reached getOption("max.print") -- omitted 23 rows]

Now, check out the help for ?summary.survfit. You can give the summary() function an
option for what times you want to show in the results. Look at the range of followup times in
the lung dataset with range(). You can create a sequence of numbers going from one number
to another number by increments of yet another number with the seq() function.

228

?summary.survfit
range(lung$time)

[1] 5 1022

seq(0, 1100, 100)

[1] 0 100 200 300 400 500 600 700 800 900 1000 1100

And we can use that sequence vector with a summary call on sfit to get life tables at those
intervals separately for both males (1) and females (2). From these tables we can start to see
that males tend to have worse survival than females.

summary(sfit, times=seq(0, 1000, 100))

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)

sex=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 138 0 1.0000 0.0000 1.0000 1.000
100 114 24 0.8261 0.0323 0.7652 0.892
200 78 30 0.6073 0.0417 0.5309 0.695
300 49 20 0.4411 0.0439 0.3629 0.536
400 31 15 0.2977 0.0425 0.2250 0.394
500 20 7 0.2232 0.0402 0.1569 0.318
600 13 7 0.1451 0.0353 0.0900 0.234
700 8 5 0.0893 0.0293 0.0470 0.170
800 6 2 0.0670 0.0259 0.0314 0.143
900 2 2 0.0357 0.0216 0.0109 0.117
1000 2 0 0.0357 0.0216 0.0109 0.117

sex=2
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 90 0 1.0000 0.0000 1.0000 1.000
100 82 7 0.9221 0.0283 0.8683 0.979
200 66 11 0.7946 0.0432 0.7142 0.884
300 43 9 0.6742 0.0523 0.5791 0.785
400 26 10 0.5089 0.0603 0.4035 0.642
500 21 5 0.4110 0.0626 0.3050 0.554

229

600 11 3 0.3433 0.0634 0.2390 0.493
700 8 3 0.2496 0.0652 0.1496 0.417
800 2 5 0.0832 0.0499 0.0257 0.270
900 1 0 0.0832 0.0499 0.0257 0.270

9.2.3 Kaplan-Meier Plots

Now that we’ve fit a survival curve to the data it’s pretty easy to visualize it with a Kaplan-
Meier plot. Create the survival object if you don’t have it yet, and instead of using summary(),
use plot() instead.

sfit <- survfit(Surv(time, status)~sex, data=lung)
plot(sfit)

0 200 400 600 800 1000

0.
0

0.
4

0.
8

There are lots of ways to modify the plot produced by base R’s plot() function. You can
see more options with the help for ?plot.survfit. We’re not going to go into any more
detail here, because there’s another package called survminer that provides a function called
ggsurvplot() that makes it much easier to produce publication-ready survival plots, and if
you’re familiar with ggplot2 syntax it’s pretty easy to modify. So, let’s load the package and
try it out.

library(survminer)
ggsurvplot(sfit)

230

+
++++++++++++++++

++++

+ + ++

++
++++++++++++++++++++

+++++
++++++

+ + +
0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +sex=1 sex=2

This plot is substantially more informative by default, just because it automatically color codes
the different groups, adds axis labels, and creates and automatic legend. But there’s a lot more
you can do pretty easily here. Let’s add confidence intervals, show the p-value for the log-rank
test, show a risk table below the plot, and change the colors and the group labels.

ggsurvplot(sfit, conf.int=TRUE, pval=TRUE, risk.table=TRUE,
legend.labs=c("Male", "Female"), legend.title="Sex",
palette=c("dodgerblue2", "orchid2"),
title="Kaplan-Meier Curve for Lung Cancer Survival",
risk.table.height=.15)

231

+

+++++
+++++

++
++++

++
++

+ + ++

++

+++
+
++++++++++++++

++

+
++++

+
++
+++

+
+ +

p = 0.0013

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Sex + +Male Female

Kaplan−Meier Curve for Lung Cancer Survival

138 62 20 7 2
90 53 21 3 0Female

Male

0 250 500 750 1000
Time

S
ex

Number at risk

232

Exercise 1

Take a look at the built in colon dataset. If you type ?colon it’ll ask you if you
wanted help on the colon dataset from the survival package, or the colon operator. Click
“Chemotherapy for Stage B/C colon cancer”, or be specific with ?survival::colon.
This dataset has survival and recurrence information on 929 people from a clinical trial
on colon cancer chemotherapy. There are two rows per person, indidicated by the event
type (etype) variable – etype==1 indicates that row corresponds to recurrence; etype==2
indicates death.
First, let’s turn the colon data into a tibble, then filter the data to only include the
survival data, not the recurrence data. Let’s call this new object colondeath. The
filter() function is in the dplyr library, which you can get by running library(dplyr).
If you don’t have dplyr you can use the base subset() function instead.

library(dplyr)
colon <- as_tibble(colon)
colondeath <- filter(colon, etype==2)

Or, using base subset()
colondeath <- subset(colon, etype==2)

head(colondeath)

A tibble: 6 x 16
id study rx sex age obstruct perfor adhere nodes status differ

<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 Lev+5FU 1 43 0 0 0 5 1 2
2 2 1 Lev+5FU 1 63 0 0 0 1 0 2
3 3 1 Obs 0 71 0 0 1 7 1 2
4 4 1 Lev+5FU 0 66 1 0 0 6 1 2
5 5 1 Obs 1 69 0 0 0 22 1 2
6 6 1 Lev+5FU 0 57 0 0 0 9 1 2
i 5 more variables: extent <dbl>, surg <dbl>, node4 <dbl>, time <dbl>,
etype <dbl>

Exercise 2

Look at the help for ?colon again. How are sex and status coded? How is this different
from the lung data?

233

Exercise 3

Using survfit(Surv(..., ...,)~..., data=colondeath), create a survival curve sep-
arately for males versus females. Call the resulting object sfit. Run a summary() on this
object, showing time points 0, 500, 1000, 1500, and 2000. Do males or females appear to
fair better over this time period?

sex=0
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 445 0 1.000 0.0000 1.000 1.000
500 381 64 0.856 0.0166 0.824 0.889
1000 306 75 0.688 0.0220 0.646 0.732
1500 265 40 0.598 0.0232 0.554 0.645
2000 218 22 0.547 0.0236 0.503 0.596

sex=1
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 484 0 1.000 0.0000 1.000 1.000
500 418 65 0.866 0.0155 0.836 0.897
1000 335 83 0.694 0.0210 0.654 0.736
1500 287 46 0.598 0.0223 0.556 0.644
2000 238 25 0.545 0.0227 0.503 0.592

Exercise 4

Using the survminer package, plot a Kaplan-Meier curve for this analysis with confidence
intervals and showing the p-value. See ?ggsurvplot for help. Is there a significant
difference between males and females?

234

+ +++ ++++

+

+ ++ +++ +++++++

p = 0.89

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +sex=0 sex=1

Exercise 5

Create Kaplan-Meier plot stratifying by:

1. The extent of differentiation (well, moderate, poor), showing the p-value.
2. Whether or not there was detectable cancer in >=4 lymph nodes, showing the

p-value and confidence bands.

235

+ +++
+ +++ +++

+

++ + +

p = 0.00019

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + + +differ=1 differ=2 differ=3

+

+ +++ ++

+++ +
p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +node4=0 node4=1

9.2.4 Cox Regression

Kaplan-Meier curves are good for visualizing differences in survival between two categorical
groups, and the log-rank test you get when you ask for pval=TRUE is useful for asking if
there are differences in survival between different groups. But this doesn’t generalize well

236

for assessing the effect of quantitative variables. Just try creating a K-M plot for the nodes
variable, which has values that range from 0-33. What a mess! Don’t do this.

ggsurvplot(survfit(Surv(time, status)~nodes, data=colondeath))

+ + ++ +++++++ +++ ++ ++ ++++
++

+

++
+++ ++++++ +++

++++++++ +++ ++++ ++++++++ + ++++ +++ ++ ++ + +++ +++ +
+

+
+ ++ ++ +

+

+

0.00
0.25
0.50
0.75
1.00

0 1000 2000 3000
TimeS

ur
vi

va
l p

ro
ba

bi
lit

y

Strata

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

nodes=0

nodes=1

nodes=2

nodes=3

nodes=4

nodes=5

nodes=6

nodes=7

nodes=8

nodes=9

nodes=10

nodes=11

nodes=12

nodes=13

nodes=14

nodes=15

nodes=16

nodes=17

nodes=19

nodes=20

nodes=22

nodes=24

nodes=27

nodes=33

At some point using a categorical grouping for K-M plots breaks down, and further, you might
want to assess how multiple variables work together to influence survival. For example, you
might want to simultaneously examine the effect of race and socioeconomic status, so as to
adjust for factors like income, access to care, etc., before concluding that ethnicity influences
some outcome.

Cox PH regression can assess the effect of both categorical and continuous variables, and can
model the effect of multiple variables at once. The coxph() function uses the same syntax as
lm(), glm(), etc. The response variable you create with Surv() goes on the left hand side of
the formula, specified with a ~. Explanatory variables go on the right side.

Let’s go back to the lung cancer data and run a Cox regression on sex.

fit <- coxph(Surv(time, status)~sex, data=lung)
fit

Call:
coxph(formula = Surv(time, status) ~ sex, data = lung)

237

coef exp(coef) se(coef) z p
sex -0.5 0.6 0.2 -3 0.001

Likelihood ratio test=11 on 1 df, p=0.001
n= 228, number of events= 165

The exp(coef) column contains 𝑒𝛽1 (see background section above for more info). This is
the hazard ratio – the multiplicative effect of that variable on the hazard rate (for each unit
increase in that variable). So, for a categorical variable like sex, going from male (baseline)
to female results in approximately ~40% reduction in hazard. You could also flip the sign on
the coef column, and take exp(0.531), which you can interpret as being male resulting in a
1.7-fold increase in hazard, or that males die ad approximately 1.7x the rate per unit time as
females (females die at 0.588x the rate per unit time as males).

Just remember:

• HR=1: No effect
• HR>1: Increase in hazard
• HR<1: Reduction in hazard (protective)

You’ll also notice there’s a p-value on the sex term, and a p-value on the overall model. That
0.00111 p-value is really close to the p=0.00131 p-value we saw on the Kaplan-Meier plot.
That’s because the KM plot is showing the log-rank test p-value. You can get this out of the
Cox model with a call to summary(fit). You can directly calculate the log-rank test p-value
using survdiff().

summary(fit)

Call:
coxph(formula = Surv(time, status) ~ sex, data = lung)

n= 228, number of events= 165

coef exp(coef) se(coef) z Pr(>|z|)
sex -0.531 0.588 0.167 -3.18 0.0015

exp(coef) exp(-coef) lower .95 upper .95
sex 0.588 1.7 0.424 0.816

Concordance= 0.579 (se = 0.021)
Likelihood ratio test= 10.6 on 1 df, p=0.001
Wald test = 10.1 on 1 df, p=0.001
Score (logrank) test = 10.3 on 1 df, p=0.001

238

survdiff(Surv(time, status)~sex, data=lung)

Call:
survdiff(formula = Surv(time, status) ~ sex, data = lung)

N Observed Expected (O-E)^2/E (O-E)^2/V
sex=1 138 112 91.6 4.55 10.3
sex=2 90 53 73.4 5.68 10.3

Chisq= 10.3 on 1 degrees of freedom, p= 0.001

Let’s create another model where we analyze all the variables in the dataset! This shows us
how all the variables, when considered together, act to influence survival. Some are very strong
predictors (sex, ECOG score). Interestingly, the Karnofsky performance score as rated by the
physician was marginally significant, while the same score as rated by the patient was not.

fit <- coxph(Surv(time, status)~sex+age+ph.ecog+ph.karno+pat.karno+meal.cal+wt.loss, data=lung)
fit

Call:
coxph(formula = Surv(time, status) ~ sex + age + ph.ecog + ph.karno +

pat.karno + meal.cal + wt.loss, data = lung)

coef exp(coef) se(coef) z p
sex -6e-01 6e-01 2e-01 -2.7 0.006
age 1e-02 1e+00 1e-02 0.9 0.359
ph.ecog 7e-01 2e+00 2e-01 3.3 0.001
ph.karno 2e-02 1e+00 1e-02 2.0 0.046
pat.karno -1e-02 1e+00 8e-03 -1.5 0.123
meal.cal 3e-05 1e+00 3e-04 0.1 0.898
wt.loss -1e-02 1e+00 8e-03 -1.8 0.065

Likelihood ratio test=28 on 7 df, p=2e-04
n= 168, number of events= 121

(60 observations deleted due to missingness)

Exercise 6

Let’s go back to the colon cancer dataset. Remember, you created a colondeath object
in the first exercise that only includes survival (etype==2), not recurrence data points.

239

See ?colon for more information about this dataset.
Take a look at levels(colondeath$rx). This tells you that the rx variable is the type of
treatment the patient was on, which is either nothing (coded Obs, short for Observation),
Levamisole (coded Lev), or Levamisole + 5-fluorouracil (coded Lev+5FU). This is a factor
variable coded with these levels, in that order. This means that Obs is treated as the
baseline group, and other groups are dummy-coded to represent the respective group.

Table 9.1: With k levels of a categorical factor variable, you get k-1 dummy variables
created, each 0/1, indicating that the sample is a particular non-reference
category. Having value 0 for all dummy variables indicates that the sample is
baseline.

rx Lev Lev+5FU
Obs 0 0
Lev 1 0
Lev+5FU 0 1

Exercise 7

Run a Cox proportional hazards regression model against this rx variable. How do you
interpret the result? Which treatment seems to be significantly different from the control
(Observation)?

coef exp(coef) se(coef) z p
rxLev -0.03 0.97 0.11 -0.2 0.809
rxLev+5FU -0.37 0.69 0.12 -3.1 0.002

Likelihood ratio test=12 on 2 df, p=0.002
n= 929, number of events= 452

Exercise 8

Show the results using a Kaplan-Meier plot, with confidence intervals and the p-value.

240

+

+++ ++

+ ++ ++ ++

+ ++ +++

p = 0.0029

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + + +rx=Obs rx=Lev rx=Lev+5FU

Exercise 9

Fit another Cox regression model accounting for age, sex, and the number of nodes with
detectable cancer. Notice the test statistic on the likelihood ratio test becomes much
larger, and the overall model becomes more significant. What do you think accounted
for this increase in our ability to model survival?

coef exp(coef) se(coef) z p
rxLev -0.080 0.923 0.112 -0.7 0.5
rxLev+5FU -0.403 0.669 0.121 -3.3 8e-04
age 0.005 1.005 0.004 1.3 0.2
sex -0.028 0.972 0.096 -0.3 0.8
nodes 0.093 1.097 0.009 10.5 <2e-16

Likelihood ratio test=88 on 5 df, p=<2e-16
n= 911, number of events= 441

(18 observations deleted due to missingness)

9.2.5 Categorizing for KM plots

Let’s go back to the lung data and look at a Cox model for age. Looks like age is very slightly
significant when modeled as a continuous variable.

241

coxph(Surv(time, status)~age, data=lung)

Call:
coxph(formula = Surv(time, status) ~ age, data = lung)

coef exp(coef) se(coef) z p
age 0.019 1.019 0.009 2 0.04

Likelihood ratio test=4 on 1 df, p=0.04
n= 228, number of events= 165

Now that your regression analysis shows you that age is marginally significant, let’s make a
Kaplan-Meier plot. But, as we saw before, we can’t just do this, because we’ll get a separate
curve for every unique value of age!

ggsurvplot(survfit(Surv(time, status)~age, data=lung))

One thing you might see here is an attempt to categorize a continuous variable into different
groups – tertiles, upper quartile vs lower quartile, a median split, etc – so you can make the
KM plot. But, how you make that cut is meaningful! Check out the help for ?cut. cut()
takes a continuous variable and some breakpoints and creats a categorical variable from that.
Let’s get the average age in the dataset, and plot a histogram showing the distribution of
age.

mean(lung$age)
hist(lung$age)
ggplot(lung, aes(age)) + geom_histogram(bins=20)

Now, let’s try creating a categorical variable on lung$age with cut pounts at 0, 62 (the mean),
and +Infinity (no upper limit). We could continue adding a labels= option here to label the
groupings we create, for instance, as “young” and “old”. Finally, we could assign the result of
this to a new object in the lung dataset.

cut(lung$age, breaks=c(0, 62, Inf))

[1] (62,Inf] (62,Inf] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf]
[9] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (0,62] (0,62] (62,Inf]
[17] (62,Inf] (62,Inf] (0,62] (0,62] (62,Inf] (0,62] (0,62] (0,62]
[25] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf]
[33] (0,62] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf]

242

[41] (62,Inf] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf]
[49] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf] (0,62] (0,62] (0,62]
[57] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf] (0,62] (62,Inf] (62,Inf]
[65] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62]
[73] (62,Inf] (0,62] (0,62] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf]
[81] (0,62] (0,62] (0,62] (0,62] (0,62] (62,Inf] (0,62] (0,62]
[89] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (62,Inf] (62,Inf]
[97] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf]
[105] (0,62] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (62,Inf] (0,62]
[113] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf]
[121] (62,Inf] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (62,Inf]
[129] (62,Inf] (0,62] (0,62] (0,62] (0,62] (0,62] (62,Inf] (62,Inf]
[137] (0,62] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf]
[145] (0,62] (0,62] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (0,62]
[153] (0,62] (0,62] (0,62] (62,Inf] (62,Inf] (0,62] (62,Inf] (0,62]
[161] (0,62] (0,62] (62,Inf] (62,Inf] (62,Inf] (0,62] (0,62] (0,62]
[169] (0,62] (62,Inf] (0,62] (0,62] (0,62] (0,62] (0,62] (0,62]
[177] (0,62] (0,62] (0,62] (62,Inf] (0,62] (0,62] (62,Inf] (62,Inf]
[185] (0,62] (0,62] (62,Inf] (0,62] (62,Inf] (0,62] (62,Inf] (0,62]
[193] (0,62] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (62,Inf] (0,62] (0,62]
[reached getOption("max.print") -- omitted 28 entries]
Levels: (0,62] (62,Inf]

cut(lung$age, breaks=c(0, 62, Inf), labels=c("young", "old"))

[1] old old young young young old old old young young young old
[13] old young young old old old young young old young young young
[25] old old young old young old old old young young young young
[37] old old old old old old young young old old old old
[49] old young old old old young young young old young young old
[61] old young old old old old old old old old old young
[73] old young young old young young old old young young young young
[85] young old young young young old old old old young old old
[97] old old old old young old young old young old young old
[109] young old old young old old young old young old old old
[121] old young old old old old young old old young young young
[133] young young old old young young young young old old old old
[145] young young old young old young old young young young young old
[157] old young old young young young old old old young young young
[169] young old young young young young young young young young young old
[181] young young old old young young old young old young old young

243

[193] young old old old old old young young
[reached getOption("max.print") -- omitted 28 entries]
Levels: young old

the base r way:
lung$agecat <- cut(lung$age, breaks=c(0, 62, Inf), labels=c("young", "old"))

or the dplyr way:
lung <- lung %>%
mutate(agecat=cut(age, breaks=c(0, 62, Inf), labels=c("young", "old")))

head(lung)

A tibble: 6 x 11
inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 3 306 2 74 1 1 90 100 1175 NA
2 3 455 2 68 1 0 90 90 1225 15
3 3 1010 1 56 1 0 90 90 NA 15
4 5 210 2 57 1 1 90 60 1150 11
5 1 883 2 60 1 0 100 90 NA 0
6 12 1022 1 74 1 1 50 80 513 0
i 1 more variable: agecat <fct>

Now, what happens when we make a KM plot with this new categorization? It looks like
there’s some differences in the curves between “old” and “young” patients, with older patients
having slightly worse survival odds. But at p=.39, the difference in survival between those
younger than 62 and older than 62 are not significant.

ggsurvplot(survfit(Surv(time, status)~agecat, data=lung), pval=TRUE)

244

++++++++++++++++++++
+
+++

++ ++++

+
+ +

++
++++++++++++++++

+
+ ++

+ + +
++ + +

p = 0.39

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +agecat=young agecat=old

But, what if we chose a different cut point, say, 70 years old, which is roughly the cutoff
for the upper quartile of the age distribution (see ?quantile). The result is now marginally
significant!

the base r way:
lung$agecat <- cut(lung$age, breaks=c(0, 70, Inf), labels=c("young", "old"))

or the dplyr way:
lung <- lung %>%
mutate(agecat=cut(age, breaks=c(0, 70, Inf), labels=c("young", "old")))

plot!
ggsurvplot(survfit(Surv(time, status)~agecat, data=lung), pval=TRUE)

245

+
+++ +++++

+ +++ + +

+

++ +

+
+ +

+

p = 0.031

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + +agecat=young agecat=old

Remember, the Cox regression analyzes the continuous variable over the whole range of its
distribution, where the log-rank test on the Kaplan-Meier plot can change depending on how
you categorize your continuous variable. They’re answering a similar question in a different
way: the regression model is asking, “what is the effect of age on survival?”, while the log-rank
test and the KM plot is asking, “are there differences in survival between those less than 70
and those greater than 70 years old?”.

(New in survminer 0.2.4: the survminer package can now determine the optimal cutpoint for one
or multiple continuous variables at once, using the surv_cutpoint() and surv_categorize()
functions. Refer to this blog post for more information.)

9.3 TCGA

The Cancer Genome Atlas (TCGA) is a collaboration between the National Cancer Institute
(NCI) and the National Human Genome Research Institute (NHGRI) that collected lots of clin-
ical and genomic data across 33 cancer types. The entire TCGA dataset is over 2 petabytes
worth of gene expression, CNV profiling, SNP genotyping, DNA methylation, miRNA pro-
filing, exome sequencing, and other types of data. You can learn more about TCGA at
cancergenome.nih.gov. The data is now housed at the Genomic Data Commons Portal. There
are lots of ways to access TCGA data without actually downloading and parsing through the
data from GDC. We’ll cover more of these below. But first, let’s look at an R package that
provides convenient, direct access to TCGA data.

246

http://www.sthda.com/english/wiki/survminer-0-2-4#determine-the-optimal-cutpoint-for-continuous-variables
https://cancergenome.nih.gov
https://gdc-portal.nci.nih.gov/

9.3.1 RTCGA

The RTCGA package (bioconductor.org/packages/RTCGA) and all the associated data pack-
ages provide convenient access to clinical and genomic data in TCGA. Each of the data pack-
ages is a separate package, and must be installed (once) individually.

Load the bioconductor installer.
Try http:// if https:// doesn't work.
source("https://bioconductor.org/biocLite.R")

Install the main RTCGA package
biocLite("RTCGA")

Install the clinical and mRNA gene expression data packages
biocLite("RTCGA.clinical")
biocLite("RTCGA.mRNA")

Let’s load the RTCGA package, and use the infoTCGA() function to get some information
about the kind of data available for each cancer type.

library(RTCGA)
infoTCGA()

9.3.1.1 Survival Analysis with RTCGA Clinical Data

Next, let’s load the RTCGA.clinical package and get a little help about what’s available
there.

library(RTCGA.clinical)
?clinical

This tells us all the clinical datasets available for each cancer type. If we just focus on breast
cancer, look at how big the data is! There are 1098 rows by 3703 columns in this data alone.
Let’s look at some of the variable names. Be careful with View() here – with so many
columns, depending on which version of RStudio you have that may or may not have fixed
this issue, Viewing a large dataset like this may lock up your RStudio.

dim(BRCA.clinical)
names(BRCA.clinical)
View(BRCA.clinical)

247

http://bioconductor.org/packages/RTCGA

We’re going to use the survivalTCGA() function from the RTCGA package to pull out survival
information from the clinical data. It does this by looking at vital status (dead or alive)
and creating a times variable that’s either the days to death or the days followed up before
being censored. Look at the help for ?survivalTCGA for more info. You give it a list of
clinical datasets to pull from, and a character vector of variables to extract. Let’s look at
breast cancer, ovarian cancer, and glioblastoma multiforme. Let’s just extract the cancer type
(admin.disease_code).

Create the clinical data
clin <- survivalTCGA(BRCA.clinical, OV.clinical, GBM.clinical,

extract.cols="admin.disease_code")
Show the first few lines
head(clin)

times bcr_patient_barcode patient.vital_status admin.disease_code
379.31.0 3767 TCGA-3C-AAAU 0 brca
379.31.0.1 3801 TCGA-3C-AALI 0 brca
379.31.0.2 1228 TCGA-3C-AALJ 0 brca
379.31.0.3 1217 TCGA-3C-AALK 0 brca
379.31.0.4 158 TCGA-4H-AAAK 0 brca
379.31.0.5 1477 TCGA-5L-AAT0 0 brca

How many samples of each type?
table(clin$admin.disease_code)

brca gbm ov
1098 595 576

Tabulate by outcome
xtabs(~admin.disease_code+patient.vital_status, data=clin) %>% addmargins()

patient.vital_status
admin.disease_code 0 1 Sum

brca 994 104 1098
gbm 149 446 595
ov 279 297 576
Sum 1422 847 2269

248

Now let’s run a Cox PH model against the disease code. By default it’s going to treat breast
cancer as the baseline, because alphabetically it’s first. But you can reorder this if you want
with factor().

coxph(Surv(times, patient.vital_status)~admin.disease_code, data=clin)

Call:
coxph(formula = Surv(times, patient.vital_status) ~ admin.disease_code,

data = clin)

coef exp(coef) se(coef) z p
admin.disease_codegbm 2.9 17.9 0.1 26 <2e-16
admin.disease_codeov 1.5 4.7 0.1 13 <2e-16

Likelihood ratio test=904 on 2 df, p=<2e-16
n= 2269, number of events= 847

This tells us that compared to the baseline brca group, GBM patients have a ~18x increase
in hazards, and ovarian cancer patients have ~5x worse survival. Let’s create a survival curve,
visualize it with a Kaplan-Meier plot, and show a table for the first 5 years survival rates.

sfit <- survfit(Surv(times, patient.vital_status)~admin.disease_code, data=clin)
summary(sfit, times=seq(0,365*5,365))

Call: survfit(formula = Surv(times, patient.vital_status) ~ admin.disease_code,
data = clin)

admin.disease_code=brca
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 1096 0 1.000 0.00000 1.000 1.000
365 588 13 0.981 0.00516 0.971 0.992
730 413 11 0.958 0.00851 0.942 0.975
1095 304 20 0.905 0.01413 0.878 0.933
1460 207 9 0.873 0.01719 0.840 0.908
1825 136 14 0.799 0.02474 0.752 0.849

admin.disease_code=gbm
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 595 2 0.9966 0.00237 0.9920 1.0000
365 224 257 0.5110 0.02229 0.4692 0.5567
730 75 127 0.1998 0.01955 0.1649 0.2420

249

1095 39 31 0.1135 0.01617 0.0858 0.1500
1460 27 9 0.0854 0.01463 0.0610 0.1195
1825 12 9 0.0534 0.01259 0.0336 0.0847

admin.disease_code=ov
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 576 0 1.000 0.0000 1.000 1.000
365 411 59 0.888 0.0139 0.861 0.915
730 314 55 0.761 0.0198 0.724 0.801
1095 210 59 0.602 0.0243 0.556 0.651
1460 133 49 0.451 0.0261 0.402 0.505
1825 78 39 0.310 0.0260 0.263 0.365

ggsurvplot(sfit, conf.int=TRUE, pval=TRUE)

++
+++++++++ ++++ +++ +++ + ++ +

++ ++++++ +

+++ +++ ++ +

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000 8000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + + +admin.disease_code=brca admin.disease_code=gbm admin.disease_code=ov

9.3.1.2 Gene Expression Data

Let’s load the gene expression data.

library(RTCGA.mRNA)
?mRNA

Take a look at the size of the BRCA.mRNA dataset, show a few rows and columns.

250

dim(BRCA.mRNA)
BRCA.mRNA[1:5, 1:5]

Extra credit assignment: See if you can figure out how to join the gene expres-
sion data to the clinical data for any particular cancer type.

Take the mRNA data
BRCA.mRNA %>%
then make it a tibble (nice printing while debugging)
as_tibble() %>%
then get just a few genes
select(bcr_patient_barcode, PAX8, GATA3, ESR1) %>%
then trim the barcode (see head(clin), and ?substr)
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) %>%
then join back to clinical data
inner_join(clin, by="bcr_patient_barcode")

Similar to how survivalTCGA() was a nice helper function to pull out survival information
from multiple different clinical datasets, expressionsTCGA() can pull out specific gene expres-
sion measurements across different cancer types. See the help for ?expressionsTCGA. Let’s
pull out data for PAX8, GATA-3, and the estrogen receptor genes from breast, ovarian, and
endometrial cancer, and plot the expression of each with a box plot.

library(ggplot2)
expr <- expressionsTCGA(BRCA.mRNA, OV.mRNA, UCEC.mRNA,

extract.cols = c("PAX8", "GATA3", "ESR1"))
head(expr)

A tibble: 6 x 5
bcr_patient_barcode dataset PAX8 GATA3 ESR1
<chr> <chr> <dbl> <dbl> <dbl>

1 TCGA-A1-A0SD-01A-11R-A115-07 BRCA.mRNA -0.542 2.87 3.08
2 TCGA-A1-A0SE-01A-11R-A084-07 BRCA.mRNA -0.595 2.17 2.39
3 TCGA-A1-A0SH-01A-11R-A084-07 BRCA.mRNA 0.500 1.32 0.791
4 TCGA-A1-A0SJ-01A-11R-A084-07 BRCA.mRNA -0.588 1.84 2.50
5 TCGA-A1-A0SK-01A-12R-A084-07 BRCA.mRNA -0.965 -6.03 -4.86
6 TCGA-A1-A0SM-01A-11R-A084-07 BRCA.mRNA 0.573 1.80 2.80

table(expr$dataset)

251

BRCA.mRNA OV.mRNA UCEC.mRNA
590 561 54

ggplot(expr, aes(dataset, PAX8, fill=dataset)) + geom_boxplot()

−2

0

2

4

BRCA.mRNA OV.mRNA UCEC.mRNA
dataset

PA
X

8

dataset

BRCA.mRNA

OV.mRNA

UCEC.mRNA

ggplot(expr, aes(dataset, GATA3, fill=dataset)) + geom_boxplot()

252

−6

−4

−2

0

2

4

BRCA.mRNA OV.mRNA UCEC.mRNA
dataset

G
AT

A
3

dataset

BRCA.mRNA

OV.mRNA

UCEC.mRNA

ggplot(expr, aes(dataset, ESR1, fill=dataset)) + geom_boxplot()

−3

0

3

6

BRCA.mRNA OV.mRNA UCEC.mRNA
dataset

E
S

R
1

dataset

BRCA.mRNA

OV.mRNA

UCEC.mRNA

ggplot(expr, aes(dataset, ESR1, fill=dataset)) + geom_violin()

253

−3

0

3

6

BRCA.mRNA OV.mRNA UCEC.mRNA
dataset

E
S

R
1

dataset

BRCA.mRNA

OV.mRNA

UCEC.mRNA

We could also use tidyr to do this all in one go.

library(tidyr)
expr %>%
as_tibble() %>%
gather(gene, expression, PAX8, GATA3, ESR1) %>%
ggplot(aes(dataset, expression, fill=dataset)) +

geom_boxplot() +
facet_wrap(~gene)

ESR1 GATA3 PAX8

BRCA.mRNA OV.mRNA UCEC.mRNA BRCA.mRNA OV.mRNA UCEC.mRNA BRCA.mRNA OV.mRNA UCEC.mRNA

−6

−3

0

3

6

dataset

ex
pr

es
si

on

dataset

BRCA.mRNA

OV.mRNA

UCEC.mRNA

254

Exercise 10

The “KIPAN” cohort (in KIPAN.clinical) is the pan-kidney cohort, consisting of KICH
(chromaphobe renal cell carcinoma), KIRC (renal clear cell carcinoma), and KIPR (pap-
illary cell carcinoma). The KIPAN.clinical has KICH.clinical, KIRC.clinical, and
KIPR.clinical all combined.
Using survivalTCGA(), create a new object called clinkid using the KIPAN.clinical
cohort. For the columns to extract, get both the disease code and the patient’s gender
(extract.cols=c("admin.disease_code", "patient.gender")). The first few rows
will look like this.

times bcr_patient_barcode patient.vital_status admin.disease_code
226.62.0 1158 TCGA-KL-8323 1 kich
226.62.0.1 4311 TCGA-KL-8324 0 kich
226.62.0.2 725 TCGA-KL-8325 1 kich
226.62.0.3 3322 TCGA-KL-8326 0 kich
226.62.0.4 3553 TCGA-KL-8327 0 kich
226.62.0.5 3127 TCGA-KL-8328 0 kich

patient.gender
226.62.0 female
226.62.0.1 female
226.62.0.2 female
226.62.0.3 male
226.62.0.4 female
226.62.0.5 male

Exercise 11

The xtabs() command will produce tables of counts for categorical variables. Here’s an
example for how to use xtabs() for the built-in colon cancer dataset, which will tell you
the number of samples split by sex and by treatment.

xtabs(~rx+sex, data=colon)

sex
rx 0 1
Obs 298 332
Lev 266 354
Lev+5FU 326 282

Use the same command to examine how many samples you have for each kidney sample
type, separately by sex.

255

patient.gender
admin.disease_code female male

kich 51 61
kirc 191 346
kirp 76 212

Exercise 12

Run a Cox PH regression on the cancer type and gender. What’s the effect of gender?
Is it significant? How does survival differ by each type? Which has the worst prognosis?

coef exp(coef) se(coef) z p
admin.disease_codekirc 1.59 4.92 0.34 4.6 4e-06
admin.disease_codekirp 1.00 2.71 0.38 2.6 0.009
patient.gendermale -0.06 0.94 0.15 -0.4 0.672

Likelihood ratio test=39 on 3 df, p=1e-08
n= 937, number of events= 203

Exercise 13

Create survival curves for each different subtype. a. Produce a Kaplan-Meier plot. b.
Show survival tables each year for the first 5 years.

+++ +++++++++ ++ +
++

+++++++ +++

+++
++++

++ + + + +

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time

S
ur

vi
va

l p
ro

ba
bi

lit
y

Strata + + +admin.disease_code=kich admin.disease_code=kirc admin.disease_code=kirp

Call: survfit(formula = Surv(times, patient.vital_status) ~ admin.disease_code,

256

data = clinkid)

admin.disease_code=kich
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 111 0 1.000 0.0000 1.000 1.000
365 86 2 0.980 0.0144 0.952 1.000
730 72 2 0.954 0.0226 0.911 0.999
1095 54 3 0.910 0.0329 0.848 0.977
1460 44 1 0.893 0.0366 0.824 0.967
1825 38 1 0.871 0.0415 0.794 0.957

admin.disease_code=kirc
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 536 0 1.000 0.0000 1.000 1.000
365 385 49 0.895 0.0142 0.868 0.924
730 313 32 0.816 0.0186 0.781 0.853
1095 250 26 0.744 0.0217 0.703 0.788
1460 181 20 0.678 0.0243 0.633 0.728
1825 112 16 0.606 0.0277 0.554 0.663

admin.disease_code=kirp
time n.risk n.event survival std.err lower 95% CI upper 95% CI

0 288 0 1.000 0.0000 1.000 1.000
365 145 10 0.941 0.0182 0.906 0.977
730 100 8 0.877 0.0278 0.824 0.933
1095 67 2 0.853 0.0316 0.793 0.917
1460 54 3 0.810 0.0388 0.737 0.889
1825 36 5 0.727 0.0495 0.636 0.831

9.3.2 Other TCGA Resources

RTCGA isn’t the only resource providing easy access to TCGA data. In fact, it isn’t even the
only R/Bioconductor package. Take a look at some of the other resources shown below.

• TCGAbiolinks: another R package that allows direct query and analysis from the NCI
GDC.

– R package: bioconductor.org/packages/TCGAbiolinks
– Paper: Nucleic Acids Research 2015 DOI: 10.1093/nar/gkv1507.

• cBioPortal: cbioportal.org

– Nice graphical user interface

257

https://bioconductor.org/packages/TCGAbiolinks
https://bioconductor.org/packages/TCGAbiolinks
http://nar.oxfordjournals.org/content/44/8/e71
http://www.cbioportal.org/
http://www.cbioportal.org/

– Quick/easy summary info on patients, demographics, mutations, copy number al-
terations, etc.

– Query individual genes, find coexpressed genes
– Survival analysis against different subtypes, expression, CNAs, etc.

• OncoLnc: oncolnc.org

– Focus on survival analysis and RNA-seq data.
– Simple query interface across all cancers for any mRNA, miRNA, or lncRNA gene

(try SERPINA1)
– Precomputed Cox PH regression for every gene, for every cancer
– Kaplan-Meier plots produced on demand

• TANRIC: focus on noncoding RNA
• MEXPRESS: focus on methylation and gene expression

258

http://www.oncolnc.org/
http://www.oncolnc.org/
http://ibl.mdanderson.org/tanric/_design/basic/index.html
http://mexpress.be/

10 Predictive Analytics: Predicting and
Forecasting Influenza

This chapter will provide hands-on instruction for using machine learning algorithms to predict
a disease outcome. We will cover data cleaning, feature extraction, imputation, and using a
variety of models to try to predict disease outcome. We will use resampling strategies to
assess the performance of predictive modeling procedures such as Random Forest, stochastic
gradient boosting, elastic net regularized regression (LASSO), and k-nearest neighbors. We
will also demonstrate demonstrate how to forecast future trends given historical infectious
disease surveillance data using methodology that accounts for seasonality and nonlinearity.

Handout: Predictive Modeling Handout.

10.1 Predictive Modeling

Here we’re going to use some epidemiological data collected during an influenza A (H7N9)
outbreak in China in 2013. Of 134 cases with data, 31 died, 46 recovered, but 57 cases do not
have a recorded outcome. We’ll develop models capable of predicting death or recovery from
the unlabeled cases. Along the way, we will:

• Do some exploratory data analysis and data visualization to get an overall sense of the
data we have.

• Extract and recode features from the raw data that are more amenable to data mining
/ machine learning algorithms.

• Impute missing data points from some of the predictor variables.
• Use a framework that enables consistent access to hundreds of classification and regres-

sion algorithms, and that facilitates automated parameter tuning using bootstrapping-
based resampling for model assessment.

• We will develop models using several different approaches (Random Forest, stochastic
gradient boosting, elastic net regularized logistic regression, k-nearest neighbor) by train-
ing and testing the models on the data where the outcome is known

• We will compare the performance of each of the models and apply the best to predict
the outcome for cases where we didn’t know the outcome.

259

10.1.1 H7N9 Outbreak Data

The data we’re using here is from the 2013 outbreak of influenza A H7N9 in China, analyzed
by Kucharski et al., published in 2014.

Publication: A. Kucharski, H. Mills, A. Pinsent, C. Fraser, M. Van Kerkhove,
C. A. Donnelly, and S. Riley. 2014. Distinguishing between reservoir exposure
and human-to-human transmission for emerging pathogens using case onset data.
PLOS Currents Outbreaks (2014) Mar 7 Edition 1.

Data: Kucharski A, Mills HL, Pinsent A, Fraser C, Van Kerkhove M, Donnelly CA,
Riley S (2014) Data from: Distinguishing between reservoir exposure and human-
to-human transmission for emerging pathogens using case onset data. Dryad Dig-
ital Repository. https://doi.org/10.5061/dryad.2g43n.

The data is made available in the outbreaks package, which is a collection of several simulated
and real outbreak datasets, and has been very slightly modified for use here. The analysis
we’ll do here is inspired by and modified in part from a similar analysis by Shirin Glander.

There are two datasets available in data.zip:

1. h7n9.csv: The original dataset. Contains the following variables, with lots of missing
data throughout.

• case_id: the sample identifier
• date_onset: date of onset of syptoms
• date_hospitalization: date the patient was hospitalized, if available
• date_outcome: date the outcome (recovery, death) was observed, if available
• outcome: “Death” or “Recover,” if available
• gender: male (m) or female (f)
• age: age of the individual, if known
• province: either Shanghai, Jiangsu, Zhejiang, or Other (lumps together less com-

mon provinces)

2. h7n9_analysisready.csv: The “analysis-ready” dataset. This data has been cleaned
up, with some “feature extraction” / variable recoding done to make the data more
suitable to data mining / machine learning methods used here. We still have the outcome
variable, either Death, Recover or unknown (NA).

• case_id: (same as above)
• outcome: (same as above)
• age: (same as above, imputed if unknown)
• male: Instead of sex (m/f), this is a 0/1 indicator, where 1=male, 0=female.
• hospital: Indicator variable whether or not the patient was hospitalized
• days_to_hospital: The number of days between onset and hospitalization
• days_to_outcome: The number of days between onset and outcome (if available)

260

https://en.wikipedia.org/wiki/Influenza_A_virus_subtype_H7N9
http://doi.org/10.1371/currents.outbreaks.e1473d9bfc99d080ca242139a06c455f
https://cran.r-project.org/web/packages/outbreaks/index.html
https://github.com/bioconnector/workshops/blame/master/r-predictive-flu.Rmd#L20
https://shiring.github.io/machine_learning/2016/11/27/flu_outcome_ML_post
data/data.zip
data/h7n9.csv
data/h7n9_analysisready.csv

• early_outcome: Whether or not the outcome was recorded prior to the median
date of the outcome in the dataset

• Jiangsu: Indicator variable: 1 = the patient was from the Jiangsu province.
• Shanghai: Indicator variable: 1 = the patient was from the Shanghai province.
• Zhejiang: Indicator variable: 1 = the patient was from the Zhejiang province.
• Other: Indicator variable: 1 = the patient was from some other less common

province.

10.1.2 Importing H7N9 data

First, let’s load the packages we’ll need initially.

library(dplyr)
library(readr)
library(tidyr)
library(ggplot2)

Now let’s read in the data and take a look. Notice that it correctly read in the dates as
date-formatted variables. Later on, when we run functions such as median() on a date vari-
able, it knows how to handle that properly. You’ll also notice that there are missing values
throughout.

Read in data
flu <- read_csv("data/h7n9.csv")

View in RStudio (capital V)
View(flu)

Take a look
flu

A tibble: 134 x 8
case_id date_onset date_hospitalization date_outcome outcome gender age
<chr> <date> <date> <date> <chr> <chr> <dbl>

1 case_1 2013-02-19 NA 2013-03-04 Death m 58
2 case_2 2013-02-27 2013-03-03 2013-03-10 Death m 7
3 case_3 2013-03-09 2013-03-19 2013-04-09 Death f 11
4 case_4 2013-03-19 2013-03-27 NA <NA> f 18
5 case_5 2013-03-19 2013-03-30 2013-05-15 Recover f 20
6 case_6 2013-03-21 2013-03-28 2013-04-26 Death f 9
7 case_7 2013-03-20 2013-03-29 2013-04-09 Death m 54

261

8 case_8 2013-03-07 2013-03-18 2013-03-27 Death m 14
9 case_9 2013-03-25 2013-03-25 NA <NA> m 39
10 case_10 2013-03-28 2013-04-01 2013-04-03 Death m 20
i 124 more rows
i 1 more variable: province <chr>

10.1.3 Exploratory data analysis

Let’s use ggplot2 to take a look at the data. Refer back to the visualization section (Chapter 5)
if you need a refresher.

The outcome variable is the thing we’re most interested in here – it’s the thing we want
to eventually predict for the unknown cases. Let’s look at the distribution of that outcome
variable (Death, Recover or unknown (NA)), by age. We’ll create a density distribution
looking at age, with the fill of the distribution colored by outcome status.

ggplot(flu, aes(age)) + geom_density(aes(fill=outcome), alpha=1/3)

0.00

0.01

0.02

0 20 40 60
age

de
ns

ity

outcome
Death
Recover
NA

Let’s look at the counts of the number of deaths, recoveries, and unknowns by sex, then
separately by province.

262

ggplot(flu, aes(gender)) +
geom_bar(aes(fill=outcome), position="dodge")

We can simply add a facet_wrap to split by province.

ggplot(flu, aes(gender)) +
geom_bar(aes(fill=outcome), position="dodge") +
facet_wrap(~province)

Shanghai Zhejiang

Jiangsu Other

f m f m

0
5

10
15
20

0
5

10
15
20

gender

co
un

t outcome
Death
Recover
NA

Let’s draw a boxplot showing the age distribution by province, by outcome. This shows that
there’s a higher rate of death in older individuals but this is only observed in Jiangsu and
Zhejiang provinces.

First just by age
ggplot(flu, aes(province, age)) + geom_boxplot()
Then by age and outcome
ggplot(flu, aes(province, age)) + geom_boxplot(aes(fill=outcome))

263

0

20

40

60

Jiangsu Other Shanghai Zhejiang
province

ag
e

outcome
Death
Recover
NA

Let’s try something a little bit more advanced. First, take a look at the data again.

flu

Notice how we have three different date variables: date of onset, hospitalization, and outcome.
I’d like to draw a plot showing the date on the x-axis with a line connecting the three points
from onset, to hospitalization, to outcome (if known) for each patient. I’ll put age on the
y-axis so the individuals are separated, and I’ll do this faceted by province.

First we need to use the gather function from the tidyr package to gather up all the date_?
variables into a single column we’ll call key, with the actual values being put into a new column
called date.

Gather the date columns
flugather <- flu %>%
gather(key, date, starts_with("date_"))

Look at the data as is
flugather

Better: Show the data arranged by case_id so you see the three entries
flugather %>% arrange(case_id)

A tibble: 402 x 7

264

case_id outcome gender age province key date
<chr> <chr> <chr> <dbl> <chr> <chr> <date>

1 case_1 Death m 58 Shanghai date_onset 2013-02-19
2 case_1 Death m 58 Shanghai date_hospitalization NA
3 case_1 Death m 58 Shanghai date_outcome 2013-03-04
4 case_10 Death m 20 Shanghai date_onset 2013-03-28
5 case_10 Death m 20 Shanghai date_hospitalization 2013-04-01
6 case_10 Death m 20 Shanghai date_outcome 2013-04-03
7 case_100 <NA> m 30 Zhejiang date_onset 2013-04-16
8 case_100 <NA> m 30 Zhejiang date_hospitalization NA
9 case_100 <NA> m 30 Zhejiang date_outcome NA
10 case_101 <NA> f 51 Zhejiang date_onset 2013-04-13
i 392 more rows

Now that we have this, let’s visualize the number of days that passed between onset, hospital-
ization and outcome, for each case. We see that there are lots of unconnected points, especially
in Jiangsu and Zhejiang provinces, where one of these dates isn’t known.

ggplot(flugather, aes(date, y=age, color=outcome)) +
geom_point() +
geom_path(aes(group=case_id)) +
facet_wrap(~province)

265

Shanghai Zhejiang

Jiangsu Other

Mar Apr May Jun Jul Aug Mar Apr May Jun Jul Aug

0

20

40

60

0

20

40

60

date

ag
e

outcome
Death
Recover
NA

10.1.4 Feature Extraction

The variables in our data are useful for summary statistics, visualization, EDA, etc. But we
need to do some feature extraction or variable recoding to get the most out of machine learning
models.

• Age: we’ll keep this one as is.
• Gender: instead of m/f, let’s convert this into a binary indicator variable where 0=female,

1=male.
• Province: along the same lines, let’s create binary classifiers that indicate Shanghai,

Zhejiang, Jiangsu, or other provinces.
• Hospitalization: let’s create a binary classifier where 0=not hospitalized, 1=hospitalized.
• Dates: Let’s also take the dates of onset, hospitalization, and outcome, and transform

these into days between onset and hospitalization, and days from onset to outcome. The

266

algorithms aren’t going to look at one column then another to do this math – we have
to extract this feature ourselves.

• Early outcome: let’s create another binary 0/1 indicating whether someone had an early
outcome (earlier than the median outcome date observed).

Let’s build up this pipeline one step at a time. If you want to skip ahead, you can simply read
in the already extracted/recoded/imputed dataset at data/h7n9_analysisready.csv.

First, let’s make a backup of the original data in case we mess something up.

flu_orig <- flu

10.1.4.1 Create gender / hospitalization indicators

Now let’s start recoding, one step at a time. First of all, when we mutate to add a new variable,
we can put in a logical comparison to tell us whether a statement is TRUE or FALSE. For
example, let’s look at the gender variable.

flu$gender

We can ask if gender is male (“m”) like this:

flu$gender=="m"

So we can do that with a mutate statement on a pipeline. Once we do that, we can remove
the old gender variable. E.g.:

flu %>%
mutate(male = gender=="m") %>%
select(-gender)

Similarly, let’s get an indicator whether someone was hospitalized or not. If hospitalization is
missing, this would return TRUE. If you want to ask whether they are not missing, you would
use ! to negate the logical question, i.e., !is.na(flu$date_hospitalization).

flu$date_hospitalization
is.na(flu$date_hospitalization)
!is.na(flu$date_hospitalization)

So now, let’s add that to our pipeline from above.

267

data/h7n9_analysisready.csv

flu %>%
mutate(male = gender=="m") %>%
select(-gender) %>%
mutate(hospital = !is.na(date_hospitalization))

10.1.4.2 Convert dates to “days to ___”

Let’s continue to add days from onset to hospitalization and days to outcome by subtracting
one date from the other, and converting the value to numeric. We’ll also create an early
outcome binary variable indicating whether the date of the outcome was less than the median,
after removing missing variables. We’ll finally remove all the variables that start with “date.”
Finally, we’ll use the mutate_if function, which takes a predicate and an action function.
We’ll ask – if the variable is logical (TRUE/FALSE), turn it into an integer (1/0).

What's the median outcome date?
median(flu$date_outcome, na.rm=TRUE)

Run the whole pipeline
flu %>%
mutate(male = gender=="m") %>%
select(-gender) %>%
mutate(hospital = !is.na(date_hospitalization)) %>%
mutate(days_to_hospital = as.numeric(date_hospitalization - date_onset)) %>%
mutate(days_to_outcome = as.numeric(date_outcome - date_onset)) %>%
mutate(early_outcome = date_outcome < median(date_outcome, na.rm=TRUE)) %>%
select(-starts_with("date")) %>%
mutate_if(is.logical, as.integer)

Once you’re satisfied your pipeline works, reassign the pipeline back to the flu object itself
(remember, we created the backup above in case we messed something up here).

Make the assignment
flu <- flu %>%
mutate(male = gender=="m") %>%
select(-gender) %>%
mutate(hospital = !is.na(date_hospitalization)) %>%
mutate(days_to_hospital = as.numeric(date_hospitalization - date_onset)) %>%
mutate(days_to_outcome = as.numeric(date_outcome - date_onset)) %>%
mutate(early_outcome = date_outcome < median(date_outcome, na.rm=TRUE)) %>%
select(-starts_with("date")) %>%

268

mutate_if(is.logical, as.integer)

Take a look
flu

A tibble: 134 x 9
case_id outcome age province male hospital days_to_hospital
<chr> <chr> <dbl> <chr> <int> <int> <dbl>

1 case_1 Death 58 Shanghai 1 0 NA
2 case_2 Death 7 Shanghai 1 1 4
3 case_3 Death 11 Other 0 1 10
4 case_4 <NA> 18 Jiangsu 0 1 8
5 case_5 Recover 20 Jiangsu 0 1 11
6 case_6 Death 9 Jiangsu 0 1 7
7 case_7 Death 54 Jiangsu 1 1 9
8 case_8 Death 14 Zhejiang 1 1 11
9 case_9 <NA> 39 Zhejiang 1 1 0
10 case_10 Death 20 Shanghai 1 1 4
i 124 more rows
i 2 more variables: days_to_outcome <dbl>, early_outcome <int>

10.1.4.3 Create indicators for province

Now, there’s one more thing we want to do. Instead of a single “province” variable that has
multiple levels, we want to do the dummy coding ourselves. When we ran regression models
R handled this internally without our intervention. But we need to be explicit here. Here’s
one way to do it.

First, there’s a built-in function called model.matrix that creates dummy codes. You have
to give it a formula like you do in linear models, but here, I give it a ~0+variable syntax so
that it doesn’t try to create an intercept. That is, instead of k-1 dummy variables, it’ll create
k. Try it.

model.matrix(~0+province, data=flu)

There’s another built-in function called cbind that binds columns together. This can be
dangerous to use if you’re not certain that rows are in the same order (there, it’s better to use
an inner join). But here, we’re certain they’re in the same order. Try binding the results of
that to the original data.

cbind(flu, model.matrix(~0+province, data=flu))

269

Finally, turn it into a tibble and select out the original province variable. Once you’ve run the
pipeline, go back and make the assignment back to the flu object itself.

flu <- cbind(flu, model.matrix(~0+province, data=flu)) %>%
as_tibble() %>%
select(-province)

flu

A tibble: 134 x 12
case_id outcome age male hospital days_to_hospital days_to_outcome
<chr> <chr> <dbl> <int> <int> <dbl> <dbl>

1 case_1 Death 58 1 0 NA 13
2 case_2 Death 7 1 1 4 11
3 case_3 Death 11 0 1 10 31
4 case_4 <NA> 18 0 1 8 NA
5 case_5 Recover 20 0 1 11 57
6 case_6 Death 9 0 1 7 36
7 case_7 Death 54 1 1 9 20
8 case_8 Death 14 1 1 11 20
9 case_9 <NA> 39 1 1 0 NA
10 case_10 Death 20 1 1 4 6
i 124 more rows
i 5 more variables: early_outcome <int>, provinceJiangsu <dbl>,
provinceOther <dbl>, provinceShanghai <dbl>, provinceZhejiang <dbl>

Optional: Notice how the new variables are provinceJiangsu, provinceOther, provinceShanghai,
provinceZhejiang. If we want to strip off the “province” we can do that. There’s a built-in
command called gsub that can help here. Take a look at the help for ?gsub.

Take a look at the names of the flu dataset.
names(flu)

Remove "province"
gsub("province", "", names(flu))

Now make the assignment back to names(flu)
names(flu) <- gsub("province", "", names(flu))

Take a look
flu

270

10.1.5 Imputation

We have a lot of missing data points throughout. Most of the data mining algorithms we’re
going to use later can’t handle missing data, so observations with any missing data are excluded
from the model completely. If we have a large dataset and only a few missing values, it’s
probably better to exclude them and proceed. But since we’ve already got a pretty low
number of observations, we need to try to impute missing values to maximize our use of the
data we have.

There are lots of different imputation approaches. An overly simplistic method is simply a
mean or median imputation – you simply plug in the mean value for that column for the missing
sample’s value. This leaves the mean unchanged (good) but artificially decreases the variance
(not good). We’re going to use the mice package for imputation (Multivariate Imputation by
Chained Equations). This package gives you functions that can impute continuous, binary,
and ordered/unordered categorical data, imputing each incomplete variable with a separate
model. It tries to account for relations in the data and uncertainty about those relationships.
The methods are described in the paper.

Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by
chained equations in R. Journal of statistical software, 45(3).

Let’s load the mice package, and take a look at our data again.

library(mice)
flu

A tibble: 134 x 12
case_id outcome age male hospital days_to_hospital days_to_outcome
<chr> <chr> <dbl> <int> <int> <dbl> <dbl>

1 case_1 Death 58 1 0 NA 13
2 case_2 Death 7 1 1 4 11
3 case_3 Death 11 0 1 10 31
4 case_4 <NA> 18 0 1 8 NA
5 case_5 Recover 20 0 1 11 57
6 case_6 Death 9 0 1 7 36
7 case_7 Death 54 1 1 9 20
8 case_8 Death 14 1 1 11 20
9 case_9 <NA> 39 1 1 0 NA
10 case_10 Death 20 1 1 4 6
i 124 more rows
i 5 more variables: early_outcome <int>, Jiangsu <dbl>, Other <dbl>,
Shanghai <dbl>, Zhejiang <dbl>

271

https://www.jstatsoft.org/article/view/v045i03

Eventually we want to predict the outcome, so we don’t want to factor that into the imputation.
We also don’t want to factor in the case ID, because that’s just an individual’s identifier. So
let’s create a new dataset selecting out those two variables so we can try to impute everything
else.

flu %>%
select(-1, -2)

The mice() function itself returns a special kind of object called a multiply imputed data set,
and from this we can run mice’s complete() on the thing returned by mice() to complete
the dataset that was passed to it. Here’s what we’ll do. We’ll take the flu data, select out the
first two columns, create the imputation, then complete the original data, assigning that to a
new dataset called fluimp. First let’s set the random number seed generator to some number
(use the same as I do if you want identical results).

set.seed(42)
fluimp <- flu %>%
select(-1, -2) %>%
mice(print=FALSE) %>%
complete()

fluimp

Now, we need to put the data back together again. We do this by selecting the original two
columns from the original flu data, and then using cbind() like above to mash the two datasets
together side by side. Finally, we’ll turn it back into a tibble. Once you’ve run the pipeline
and you like the result, assign it back to fluimp.

Run the pipeline successfully first before you reassign!
fluimp <- flu %>%
select(1,2) %>%
cbind(fluimp) %>%
as_tibble()

fluimp

A tibble: 134 x 12
case_id outcome age male hospital days_to_hospital days_to_outcome
<chr> <chr> <dbl> <int> <int> <dbl> <dbl>

1 case_1 Death 58 1 0 7 13
2 case_2 Death 7 1 1 4 11
3 case_3 Death 11 0 1 10 31
4 case_4 <NA> 18 0 1 8 38
5 case_5 Recover 20 0 1 11 57

272

6 case_6 Death 9 0 1 7 36
7 case_7 Death 54 1 1 9 20
8 case_8 Death 14 1 1 11 20
9 case_9 <NA> 39 1 1 0 18
10 case_10 Death 20 1 1 4 6
i 124 more rows
i 5 more variables: early_outcome <int>, Jiangsu <dbl>, Other <dbl>,
Shanghai <dbl>, Zhejiang <dbl>

At this point we’re almost ready to do some predictive modeling! If you didn’t make it this
far and you just want to read in the analysis ready dataset, you can do that too.

fluimp <- read_csv("data/h7n9_analysisready.csv")

10.1.6 The caret package

We’re going to use the caret package for building and testing predictive models using a variety
of different data mining / ML algorithms. The package was published in JSS in 2008. Max
Kuhn’s slides from the 2013 useR! conference are also a great resource, as is the caret package
vignette, and the detailed e-book documentation.

Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Jour-
nal of Statistical Software, 28(5), 1 - 26. doi: http://dx.doi.org/10.18637/jss.v028
.i05

The caret package (short for Classification And REgression Training) is a set of functions
that streamline the process for creating and testing a wide variety of predictive models with
different resampling approaches, as well as estimating variable importance from developed
models. There are many different modeling functions in R spread across many different pack-
ages, and they all have different syntax for model training and/or prediction. The caret
package provides a uniform interface the functions themselves, as well as a way to standardize
common tasks (such parameter tuning and variable importance).

The train function from caret is used to:

• evaluate, using resampling, the effect of model tuning parameters on performance
• choose the “optimal” model across these parameters
• estimate model performance from a training set

273

https://www.r-project.org/conferences/useR-2013/Tutorials/kuhn/user_caret_2up.pdf
https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
https://cran.r-project.org/web/packages/caret/vignettes/caret.pdf
http://topepo.github.io/caret/
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.18637/jss.v028.i05
http://cran.r-project.org/web/packages/caret/index.html

10.1.6.1 Models available in caret

First you have to choose a specific type of model or algorithm. Currently there are 239 different
algorithms implemented in caret. Caret provides the interface to the method, but you still
need the external package installed. For example, we’ll be fitting a Random Forest model, and
for that we’ll need the randomForest package installed. You can see all the methods that you
can deploy by looking at the help for train.

library(caret)
?train

From here, click on the link to see the available models or models by tag. From here you
can search for particular models by name. We’re going to fit models using Random Forest,
stochastic gradient boosting, k-Nearest Neighbors, Lasso and Elastic-Net Regularized Gen-
eralized Linear Models. These require the packages randomForest, gbm, kknn, and glmnet,
respectively.

Each of the models may have one or more tuning parameters – some value or option you can
set to tweak how the algorithm develops. In k-nearest neighbors, we can try different values
of k. With random forest, we can set the 𝑚try option – the algorithm will select 𝑚try number
of predictors to attempt a split for classification. Caret attempts to do this using a procedure
like this:

Figure 10.1: The caret model training algorithm. Image from the caret paper.

That is, it sweeps through each possible parameter you can set for the particular type of model
you choose, and uses some kind of resampling scheme with your training data, fitting the model
on a subset and testing on the held-out samples.

274

https://cran.r-project.org/package=randomForest
http://topepo.github.io/caret/available-models.html
http://topepo.github.io/caret/train-models-by-tag.html
https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=gbm
https://cran.r-project.org/package=kknn
https://cran.r-project.org/package=glmnet

10.1.6.2 Resampling

The default resampling scheme caret uses is the bootstrap. Bootstrapping takes a random
sample with replacement from your data that’s the same size of the original data. Samples
might be selected more than once, and some aren’t selected at all. On average, each sample has
a ~63.2% chance of showing up at least once in a bootstrap sample. Some samples won’t show
up at all, and these held out samples are the ones that are used for testing the performance of
the trained model. You repeat this process many times (e.g., 25, 100, etc) to get an average
performance estimate on unseen data. Here’s what it looks like in practice.

Figure 10.2: Bootstrapping schematic. Image from Max Kuhn’s 2013 useR! talk.

Many alternatives exist. Another popular approach is cross-validation. Here, a subset of your
data (e.g., 4/5ths, or 80%) is used for training, and the remaining 1/5th or 20% is used for
performance assessment. You slide the cross-validation interval over and use the next 4/5ths
for training and 1/5th for testing. You do this again for all 5ths of the data. You can optionally
repeat this process many times (repeated cross-validation) to get an average cross validation
prediction accuracy for a given model and set of tuning parameters.

The trainControl option in the train function controls this, and you can learn more about
this under the Basic Parameter Tuning section of the caret documentation.

10.1.7 Model training

Let’s try it out! If you didn’t make it through the data preprocessing steps and you just want
to read in the analysis ready dataset, you can do this:

fluimp <- read_csv("data/h7n9_analysisready.csv")

275

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
http://topepo.github.io/caret/model-training-and-tuning.html#basic-parameter-tuning

10.1.7.1 Splitting data into known and unknown outcomes

Before we continue, let’s split the dataset into samples where we know the outcome, and those
where we don’t. The unknown samples will be the ones where is.na(outcome) is TRUE. So
you can use a filter statement.

Run the pipeline successfully first before you reassign!
These are samples with unknown data we'll use later to predict
unknown <- fluimp %>%
filter(is.na(outcome))

unknown

The known samples are the cases where !is.na(outcome) is TRUE, that is, cases where the
outcome is not (!) missing. One thing we want to do here while we’re at it is remove the case
ID. This is just an arbitrary numerically incrementing counter and we don’t want to use this
in building a model!

Run the pipeline successfully first before you reassign!
Samples with known outcomes used for model training.
known <- fluimp %>%
filter(!is.na(outcome)) %>%
select(-case_id)

known

10.1.7.2 A note on reproducibility and set.seed()

When we train a model using resampling, that sampling is going to happen pseudo-randomly.
Try running this function which generates five numbers from a random uniform distribution
between 0 and 1.

runif(5)

If you run that function over and over again, you’ll get different results. But, we can set the
random number seed generator with any value we choose, and we’ll get the same result. Try
setting the seed, drawing the random numbers, then re-setting the same seed, and re-running
the runif function again. You should get identical results.

set.seed(22908)
runif(5)

276

Eventually I’m going to compare different models to each other, so I want to set the random
number seed generator to the same value for each model so the same random bootstrap samples
are identical across models.

10.1.7.3 Random Forest

Let’s fit a random forest model. See the help for ?train and click on the link therein to see
what abbreviations correspond to which model. First set the random number seed generator
to some number, e.g., 8382, that we’ll use for all other models we make. The model forumula
here takes the know data, and the responseVar~. syntax says “predict responseVar using
every other variable in the data.” Finally, notice how when we call train() from the caret
package using “rf” as the type of model, it automatically loads the randomForest package
that you installed. If you didn’t have it installed, it would probably ask you to install it first.

Set the random number seed generator
set.seed(8382)

Fit a random forest model for outcome against everything in the model (~.)
modrf <- train(outcome~., data=known, method="rf")

Take a look at the output
modrf

Random Forest

77 samples
10 predictors
2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

mtry Accuracy Kappa
2 0.688 0.328
6 0.684 0.322
10 0.693 0.345

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was mtry = 10.

277

https://en.wikipedia.org/wiki/Random_forest
https://cran.r-project.org/package=randomForest

Take a look at what that tells us. It tells us it’s fitting a Random Forest model using 77 samples,
predicting a categorical outcome class (Death or Recover) based on 10 predictors. It’s not doing
any pre-processing like centering or scaling, and it’s doing bootstrap resampling of 77 samples
with replacement, repeated 25 times each. Random Forest has a single tuning parameter, 𝑚try
– the algorithm will select 𝑚try number of predictors to attempt a split for classification when
building a classification tree. The caret package does 25 bootstrap resamples for different
values of 𝑚try (you can also control this too if you want), and computes accuracy and kappa
measures of performance on the held-out samples.

Accuracy is the number of true assignments to the correct class divided by the total number of
samples. Kappa takes into account the expected accuracy while considering chance agreement,
and is useful for extremely imbalanced class distributions. For continuous outcomes, you can
measure things like RMSE or correlation coefficients.

A bit about random forests. Random forests are an ensemble learning approach
based on classification trees. The CART (classification and regression tree) method
searches through all available predictors to try to find a value of a single variable
that splits the data into two groups by minimizing the impurity of the outcome
between the two groups. The process is repeated over and over again until a
hierarchical (tree) structure is created. But trees don’t have great performance
(prediction accuracy) compared to other models. Small changes in the data can
drastically affect the structure of the tree.

Tree algorithms are improved by ensemble approaches - instead of growing a single
tree, grow many trees and aggregate (majority vote or averaging) the predictions
made by the ensemble. The random forest algorithm is essentially:

1. From the training data of n samples, draw a bootstrap sample of size n.
2. For each bootstrap sample, grow a classification tree, but with a small mod-

ification compared to the traditional algorithm: instead of selecting from all
possible predictor variables to form a split, choose the best split among a
randomly selected subset of 𝑚try predictors. Here, 𝑚try is the only tuning
parameter. The trees are grown to their maximum size and not “pruned”
back.

3. Repeat the steps agove until a large number of trees is grown.
4. Estimate the performance of the ensemble of trees using the “out-of-bag”

samples - i.e., those that were never selected during the bootstrap procedure
in step #1.

5. Estimate the importance of each variable in the model by randomly permuting
each predictor variable in testing on the out-of-bag samples. If a predictor is
important, prediction accuracy will degrade. If the predictor isn’t that helpful,
performance doesn’t deteriorate as much.

Random forests are efficient compared to growing a single tree. For one, the RF
algorithm only selects from 𝑚try predictors at each step, rather than all available

278

https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Confusion_matrix
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Cohen%27s_kappa

predictors. Usually 𝑚try is by default somewhere close to the square root of the
total number of available predictors, so the search is very fast. Second, while the
traditional CART tree algorithm has to go through extensive cross-validation based
pruning to avoid overfitting, the RF algorithm doesn’t do any pruning at all. In
fact, building an RF model can be faster than building a single tree!

Caret also provides a function for assessing the importance of each variable. The varImp
function knows what kind of model was fitted and knows how to estimate variable importance.
For Random Forest, it’s an estimate of how much worse the prediction gets after randomly
shuffling the values of each predictor variable in turn. A variable that’s important will result
in a much worse prediction than a variable that’s not as meaningful.

varImp(modrf, scale=TRUE)

rf variable importance

Overall
age 100.000
days_to_outcome 60.642
days_to_hospital 38.333
early_outcome 36.591
Other 15.772
hospital 8.410
male 3.758
Shanghai 1.687
Jiangsu 0.133
Zhejiang 0.000

You can also pass that whole thing to plot(), or wrap the statement in plot(), to see a
graphical representation.

varImp(modrf, scale=TRUE) %>% plot()

279

http://topepo.github.io/caret/variable-importance.html

Importance

Zhejiang

Jiangsu

Shanghai

male

hospital

Other

early_outcome

days_to_hospital

days_to_outcome

age

0 20 40 60 80 100

10.1.7.4 Stochastic Gradient Boosting

Let’s try a different method, stochastic gradient boosting, which uses a different method for
building an ensemble of classification trees (see this post for a discussion of bagging vs boosting).
This requires the gbm package. Again, set the random seed generator.

set.seed(8382)
modgbm <- train(outcome~., data=known, method="gbm", verbose=FALSE)
modgbm

Stochastic Gradient Boosting

77 samples
10 predictors
2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

interaction.depth n.trees Accuracy Kappa
1 50 0.630 0.210
1 100 0.627 0.210
1 150 0.630 0.213

280

https://en.wikipedia.org/wiki/Gradient_boosting
https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/
https://cran.r-project.org/package=gbm

2 50 0.633 0.222
2 100 0.636 0.218
2 150 0.632 0.208
3 50 0.616 0.188
3 100 0.639 0.227
3 150 0.636 0.218

Tuning parameter 'shrinkage' was held constant at a value of 0.1

Tuning parameter 'n.minobsinnode' was held constant at a value of 10
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 100, interaction.depth =
3, shrinkage = 0.1 and n.minobsinnode = 10.

Notice how stochastic gradient boosting has two different tuning parameters - interaction depth
and n trees. There were others (shrinkage, and n.minobsinnode) that were held constant. The
caret package automates the bootstrap resampling based performance assessment across all
combinations of depth and ntrees, and it tells you where you got the best performance. Notice
that the performance here doesn’t seem to be as good as random forest. We can also look at
variable importance here too, and see similar rankings.

library(gbm) # needed because new version of caret doesn't load
varImp(modgbm, scale=TRUE)
varImp(modgbm, scale=TRUE) %>% plot()

10.1.7.5 Model comparison: Random Forest vs Gradient Boosting

Let’s compare those two models. Because the random seed was set to the same number (8382),
the bootstrap resamples were identical across each model. Let’s directly compare the results
for the best models from each method.

modsum <- resamples(list(gbm=modgbm, rf=modrf))
summary(modsum)

Call:
summary.resamples(object = modsum)

Models: gbm, rf
Number of resamples: 25

281

Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

gbm 0.483 0.577 0.625 0.639 0.692 0.812 0
rf 0.552 0.654 0.692 0.693 0.731 0.864 0

Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

gbm -0.1600 0.103 0.250 0.227 0.319 0.591 0
rf -0.0162 0.255 0.366 0.345 0.421 0.697 0

It appears that random forest is doing much better in terms of both accuracy and kappa. Let’s
train a few other types of models.

10.1.7.6 Elastic net regularized logistic regression

Elastic net regularization is a method that combines both the lasso and ridge methods of
reguarizing a model. Regularization is a method for penalizing a model as it gains complexity
with more predictors in an attempt to avoid overfitting. You’ll need the glmnet package for
this.

set.seed(8382)
modglmnet <- train(outcome~., data=known, method="glmnet")
modglmnet

glmnet

77 samples
10 predictors
2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

alpha lambda Accuracy Kappa
0.10 0.000391 0.635 0.226
0.10 0.003908 0.634 0.226
0.10 0.039077 0.630 0.217
0.55 0.000391 0.635 0.226

282

https://en.wikipedia.org/wiki/Elastic_net_regularization
https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://cran.r-project.org/package=glmnet

0.55 0.003908 0.633 0.223
0.55 0.039077 0.633 0.226
1.00 0.000391 0.635 0.226
1.00 0.003908 0.630 0.215
1.00 0.039077 0.643 0.243

Accuracy was used to select the optimal model using the largest value.
The final values used for the model were alpha = 1 and lambda = 0.0391.

10.1.7.7 k-nearest neighbor

k-nearest neighbor attempts to assign samples to their closest labeled neighbors in high-
dimensional space. You’ll need the kknn package for this.

set.seed(8382)
modknn <- train(outcome~., data=known, method="kknn")
modknn

k-Nearest Neighbors

77 samples
10 predictors
2 classes: 'Death', 'Recover'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 77, 77, 77, 77, 77, 77, ...
Resampling results across tuning parameters:

kmax Accuracy Kappa
5 0.635 0.218
7 0.635 0.218
9 0.633 0.214

Tuning parameter 'distance' was held constant at a value of 2
Tuning
parameter 'kernel' was held constant at a value of optimal
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were kmax = 7, distance = 2 and kernel
= optimal.

283

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://cran.r-project.org/package=kknn

10.1.7.8 Compare all the models

Now let’s look at the performance characteristics for the best performing model across all
four types of models we produced. It still looks like random forest is coming through as the
winner.

modsum <- resamples(list(gbm=modgbm, rf=modrf, glmnet=modglmnet, knn=modknn))
summary(modsum)

Call:
summary.resamples(object = modsum)

Models: gbm, rf, glmnet, knn
Number of resamples: 25

Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

gbm 0.483 0.577 0.625 0.639 0.692 0.812 0
rf 0.552 0.654 0.692 0.693 0.731 0.864 0
glmnet 0.467 0.615 0.654 0.643 0.692 0.773 0
knn 0.452 0.586 0.615 0.635 0.667 0.818 0

Kappa
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

gbm -0.1600 0.103 0.250 0.227 0.319 0.591 0
rf -0.0162 0.255 0.366 0.345 0.421 0.697 0
glmnet -0.0284 0.150 0.267 0.243 0.319 0.538 0
knn -0.2760 0.143 0.199 0.218 0.318 0.627 0

The bwplot() function can take this model summary object and visualize it.

bwplot(modsum)

284

knn

gbm

glmnet

rf

−0.2 0.0 0.2 0.4 0.6 0.8

Accuracy

−0.2 0.0 0.2 0.4 0.6 0.8

Kappa

10.1.8 Prediction on unknown samples

Once we have a model trained it’s fairly simple to predict the class of the unknown samples.
Take a look at the unknown data again:

unknown

Now, since Random Forest worked best, let’s use that model to predict the outcome!

predict(modrf, newdata=unknown)

[1] Recover Recover Death Recover Death Death Recover Recover Death
[10] Recover Death Recover Recover Recover Recover Death Recover Death
[19] Death Death Recover Recover Recover Recover Recover Recover Recover
[28] Recover Death Death Recover Recover Recover Recover Recover Recover
[37] Recover Recover Recover Recover Recover Recover Recover Death Recover
[46] Death Recover Death Recover Recover Recover Recover Recover Recover
[55] Recover Recover Recover
Levels: Death Recover

This gives you a vector of values that would be the outcome for the individuals in the unknown
dataset. From here it’s pretty simple to put them back in the data with a mutate().

unknown %>%
mutate(outcome=predict(modrf, newdata=unknown))

285

A tibble: 57 x 12
case_id outcome age male hospital days_to_hospital days_to_outcome
<chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>

1 case_4 Recover 18 0 1 8 46
2 case_9 Recover 39 1 1 0 18
3 case_15 Death 34 0 0 11 38
4 case_16 Recover 51 1 0 3 20
5 case_22 Death 56 1 1 4 17
6 case_28 Death 51 1 0 6 6
7 case_31 Recover 43 1 0 4 21
8 case_32 Recover 46 1 0 3 20
9 case_38 Death 28 1 0 2 7
10 case_39 Recover 38 1 1 0 18
i 47 more rows
i 5 more variables: early_outcome <dbl>, Jiangsu <dbl>, Other <dbl>,
Shanghai <dbl>, Zhejiang <dbl>

Alternatively, you could pass in type="prob" to get prediction probabilities instead of pre-
dicted classes.

predict(modrf, newdata=unknown, type="prob") %>% head()

Death Recover
1 0.040 0.960
2 0.030 0.970
3 0.564 0.436
4 0.138 0.862
5 0.774 0.226
6 0.972 0.028

You could also imagine going further to get the prediction probabilities out of each type of
model we made. You could add up the prediction probabilities for Death and Recovery for
each individual across model types, and then compute a ratio. If across all the models that
ratio is, for example, 2x in favor of death, you could predict death, or if it’s 2x in favor of
recovery, you predict recover, and if it’s in between, you might call it “uncertain.” This lets
you not only reap the advantages of ensemble learning within a single algorithm, but also lets
you use information across a variety of different algorithm types.

286

10.2 Forecasting

10.2.1 The Prophet Package

Forecasting is a common data science task that helps with things like capacity planning, goal
setting, anomaly detection, and resource use projection. Forecasting can involve complex
models, where overly simplistic models can be brittle and can be too inflexible to incorporate
useful assumptions about the underlying data.

Recently, the data science team at Facebook released as open-source a tool they developed for
forecasting, called prophet, as both an R and python package.

• Paper (preprint): https://peerj.com/preprints/3190/
• Project homepage: https://facebook.github.io/prophet/
• Documentation: https://facebook.github.io/prophet/docs/quick_start.html
• R package: https://cran.r-project.org/web/packages/prophet/index.html
• Python package: https://pypi.python.org/pypi/fbprophet/
• Source code: https://github.com/facebook/prophet

Google and Twitter have released as open-source similar packages: Google’s
CausalImpact software (https://google.github.io/CausalImpact/) assists with
inferring causal effects of a design intervention on a time series, and Twitter’s
AnomalyDetection package (https://github.com/twitter/AnomalyDetection)
was designed to detect blips and anomalies in time series data given the presence
of seasonality and underlying trends. See also Rob Hyndman’s forecast package
in R.

Prophet is optimized for forecasting problems that have the following characteristics:

• Hourly, daily, or weekly observations with at least a few months (preferably a year) of
history

• Strong multiple “human-scale” seasonalities: day of week and time of year
• Important holidays that occur at irregular intervals that are known in advance (e.g. the

Super Bowl)
• A reasonable number of missing observations or large outliers
• Historical trend changes, for instance due to product launches or logging changes
• Trends that are non-linear growth curves, where a trend hits a natural limit or saturates

These use cases are optimized for business forecasting problems encountered at Facebook, but
many of the characteristics here apply well to other kinds of forecasting problems. Further,
while the default settings can produce fairly high-quality forecasts, if the results aren’t satis-
factory, you aren’t stuck with a completely automated model you can’t change. The prophet
package allows you to tweak forecasts using different parameters. The process is summarized
in the figure below.

287

https://google.github.io/CausalImpact/
https://github.com/twitter/AnomalyDetection
https://cran.r-project.org/package=forecast

Figure 10.3: Schematic view of the analyst-in-the-loop approach to forecasting at scale, which
best makes use of human and automated tasks. Image from the Prophet preprint
noted above.

288

Prophet is a good replacement for the forecast package because:

1. Prophet makes it easy. The forecast package offers many different techniques, each
with their own strengths, weaknesses, and tuning parameters. While the choice of param-
eter settings and model specification gives the expert user great flexibility, the downside is
that choosing the wrong parameters as a non-expert can give you poor results. Prophet’s
defaults work pretty well.

2. Prophet’s forecasts are intuitively customizable. You can choose smoothing pa-
rameters for seasonality that adjust how closely you fit historical cycles, and you can
adjust how agressively to follow historical trend changes. You can manually specify the
upper limit on growth curves, which allows for you to supplement the automatic forecast
with your own prior information about how your forecast will grow (or decline). You can
also specify irregular events or time points (e.g., election day, the Super Bowl, holiday
travel times, etc) that can result in outlying data points.

The prophet procedure is essentially a regression model with some additional components:

1. A piecewise linear or logistic growth curve trend. Prophet automatically detects changes
in trends by selecting changepoints from the data.

2. A yearly seasonal component modeled using Fourier series.
3. A weekly seasonal component using dummy variables.
4. A user-provided list of important holidays.

See the prophet preprint for more.

Taylor SJ, Letham B. (2017) Forecasting at scale. PeerJ Preprints 5:e3190v2
https://doi.org/10.7287/peerj.preprints.3190v2

10.2.2 CDC ILI time series data

Here we’re going to use historical flu tracking data from the CDC’s U.S. Outpatient Influenza-
like Illness Surveillance Network along with data from the National Center for Health Statistics
(NCHS) Mortality Surveillance System. This contains ILI totals from CDC and flu + pneu-
monia death data from NCHS through the end of October 2017. It’s the ilinet.csv file. Let’s
read it in, then take a look. Notice that week_start was automatically read in as a date
data type. What you see as 2003-01-06 is actually represented internally as a date, not a
character.

Read in the ILI data.
ili <- read_csv("data/ilinet.csv")
ili

289

https://cran.r-project.org/package=prophet
https://cran.r-project.org/package=forecast
https://wwwn.cdc.gov/ilinet/
https://wwwn.cdc.gov/ilinet/
https://gis.cdc.gov/grasp/fluview/mortality.html
https://gis.cdc.gov/grasp/fluview/mortality.html
data/ilinet.csv

A tibble: 818 x 6
week_start ilitotal total_patients fludeaths pneumoniadeaths all_deaths
<date> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2003-01-06 3260 171193 NA NA NA
2 2003-01-13 3729 234513 NA NA NA
3 2003-01-20 4204 231550 NA NA NA
4 2003-01-27 5696 235566 NA NA NA
5 2003-02-03 7079 246969 NA NA NA
6 2003-02-10 7782 245751 NA NA NA
7 2003-02-17 7649 253656 NA NA NA
8 2003-02-24 7228 241110 NA NA NA
9 2003-03-03 5606 241683 NA NA NA
10 2003-03-10 4450 228549 NA NA NA
i 808 more rows

We have information on ILI frequency since January 2003, but we don’t have information on
death data until 2009. From here, we have data up through the end of September 2018.

tail(ili)

A tibble: 6 x 6
week_start ilitotal total_patients fludeaths pneumoniadeaths all_deaths
<date> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2018-08-20 6519 798422 9 2426 46033
2 2018-08-27 7257 762601 5 2321 45679
3 2018-09-03 8049 823571 4 2430 44689
4 2018-09-10 9457 821290 7 2329 44279
5 2018-09-17 9966 858050 7 2239 41875
6 2018-09-24 11057 832495 6 1896 35305

10.2.3 Forecasting with prophet

Let’s load the prophet library then take a look at the help for ?prophet.

library(prophet)
?prophet

The help tells you that prophet requires a data frame containing columns named ds of type
date and y, containing the time series data. Many other options are available. Let’s start with
the data, select week_start calling it ds, and ilitotal calling it y.

290

ili %>%
select(week_start, ilitotal)

ili %>%
select(ds=week_start, y=ilitotal)

Once we do that, we can simply pipe this to prophet() to produce the prophet forecast
model.

pmod <- ili %>%
select(ds=week_start, y=ilitotal) %>%
prophet()

Now, let’s make a “future” dataset to use to predict. Looking at ?make_future_dataframe
will tell you that this function takes the prophet model and the number of days forward to
project.

future <- make_future_dataframe(pmod, periods=365*5)
tail(future)

Now, let’s forecast the future! Take a look - the yhat, yhat_lower, and yhat_upper columns
are the predictions, lower, and upper confidence bounds. There are additional columns for
seasonal and yearly trend effects.

forecast <- predict(pmod, future)
tail(forecast)

If we pass the prophet model and the forecast into the generic plot() function, it knows what
kind of objects are being passed, and will visualize the data appropriately.

plot(pmod, forecast) + ggtitle("Five year ILI forecast")

291

0

25000

50000

75000

2005 2010 2015 2020
ds

y

Five year ILI forecast

You can also use the prophet_plot_components function to see the forecast broken down into
trend and yearly seasonality. We see an inflection point around 2010 where ILI reports seem
to stop rising – if you go back to the previous plot you’ll see it there too. Perhaps this is due
to a change in surveillance or reporting strategy. You also see the yearly trend, which makes
sense for flu outbreaks. You also noticed that when we originally fit the model, daily and
weekly seasonality was disabled. This makes sense for broad time-scale things like influenza
surveillance over decades, but you might enable it for more granular time-series data.

prophet_plot_components(pmod, forecast)

292

10000

20000

30000

2005 2010 2015 2020
ds

tr
en

d

−5000
0

5000
10000
15000

January 01 April 01 July 01 October 01 January 01
Day of year

ye
ar

ly

Try it with the flu death data. Look at both flu deaths and pneumonia deaths. First, limit
the data frame to only include the latter portion where we have death surveillance data. Then
use the same procedure.

pmod <- ili %>%
filter(!is.na(pneumoniadeaths)) %>%
select(ds=week_start, y=pneumoniadeaths) %>%
prophet()

future <- make_future_dataframe(pmod, periods=365*5)
forecast <- predict(pmod, future)
plot(pmod, forecast) + ggtitle("Five year pneumonia death forecast")

293

2000

3000

4000

5000

6000

2010 2015 2020
ds

y

Five year pneumonia death forecast

See the prophet preprint for more.

Taylor SJ, Letham B. (2017) Forecasting at scale. PeerJ Preprints 5:e3190v2
https://doi.org/10.7287/peerj.preprints.3190v2

294

11 Text Mining and NLP

11.1 Chapter overview

Most of the data we’ve dealt with so far in this course has been rectangular, in the form of
a data frame or tibble, and mostly numeric. But lots of data these days comes in the form
of unstructured text. This workshop provides an overview of fundamental principles in text
mining, and introduces the tidytext package that allows you to apply to text data the same
“tidy” methods you’re familiar with for wrangling and vizualizing data.1

This course is not an extensive deep dive into natural language processing (NLP). For that
check out the CRAN task view on NLP for a long list of packages that will aid you in compu-
tational linguistics.

Before we get started, let’s load the packages we’ll need.

library(tidyverse)
library(tidytext)
library(gutenbergr)
library(topicmodels)

11.2 The Tidy Text Format

In the previous chapters linked above we discussed the three features of Tidy Data, as outlined
in Hadley Wickham’s Tidy Data paper:

• Each variable is a column
• Each observation is a row
• Each type of observational unit is a table

Tidy text format can be defined as a table with one-token-per-row. A token is any
meaningful unit of text, such as a word, that we are interested in using for analysis. Tok-
enization is the process of splitting text into tokens. This is in contrast to storing text in

1Attribution: This workshop was inspired by and/or modified in part from Text Mining with R by Julia Silge
and David Robinson.

295

https://cran.r-project.org/web/packages/tidytext/index.html
https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
http://vita.had.co.nz/papers/tidy-data.html
https://www.tidytextmining.com/

strings or in a document-term matrix (discussed later). Here, the token stored in a single row
is most often a single word. The tidytext package provides functionality to tokenize strings
by words (or n-grams, or sentences) and convert to a one-term-per-row format. By keeping
text in “tidy” tables, you can use the normal tools you’re familiar with, including dplyr, tidyr,
ggplot2, etc., for manipulation, analysis, and visualization. The tidytext package also includes
functions to convert to and from other data structures for text processing, such as a corpus2

or a document-term matrix.3

Figure 11.1: Workflow for text analysis using tidy principles.

11.2.1 The unnest_tokens function

We briefly mentioned before how to create vectors using the c() function. Let’s create a simple
character vector.

text <- c("a", "banana", "crouton")

Let’s extend that to create another character vector, this time with sentences:

text <- c("It was the best of times,",
"it was the worse of times,",
"It was the spring of hope, it was the winter of despair.")

text

Before we can turn this into a tidy text dataset, we first have to put it in a data frame.

text_df <- tibble(line = 1:3, text = text)
text_df

A tibble: 3 x 2

2Corpus objects contain strings annotated with additional metadata.
3This is a (sparse) matrix describing a collection (corpus) of documents with one row for each document and

one column for each term. The value in the matrix is typically word count or tf-idf for the document in that
row for the term in that column.

296

https://cran.r-project.org/web/packages/tidytext/index.html

line text
<int> <chr>

1 1 It was the best of times,
2 2 it was the worse of times,
3 3 It was the spring of hope, it was the winter of despair.

This data isn’t yet “tidy.” We can’t do the kinds of operations like filter out particular words
or summarize operations, for instance, to count which occur most frequently, since each row
is made up of multiple combined words. We need to convert this so that it has one-token-
per-document-per-row. Here we only have a single document, but later we’ll have multiple
documents.

We need to (1) break the text into individual tokens (i.e. tokenization) and transform it to a
tidy data structure. To do this, we use tidytext’s unnest_tokens() function.

text_df |>
unnest_tokens(output=word, input=text)

A tibble: 24 x 2
line word

<int> <chr>
1 1 it
2 1 was
3 1 the
4 1 best
5 1 of
6 1 times
7 2 it
8 2 was
9 2 the
10 2 worse
i 14 more rows

The unnest_tokens function takes a data frame (or tibble), and two additional parameters,
the output and input column names. If you specify them in the correct order, you don’t have
to specify output= or input=. You can pipe to print(n=Inf) to print them all.

text_df |>
unnest_tokens(word, text) |>
print(n=Inf)

297

First you give it the output column name that will be created as the text is unnested into it
(word, in this example). This is a column name that you choose – you could call it anything,
but word usually makes sense. Then you give it the input column that the text comes from in
the data frame you’re passing to it (text, in this case). Our text_df dataset has a column
called text that contains the data of interest.

The unnest_tokens function splits each row so that there is one word per row of the new data
frame; the default tokenization in unnest_tokens() is for single words, as shown here. Also
notice:

• Other columns, such as the line number each word came from, are retained.
• Punctuation has been stripped.
• By default, unnest_tokens() converts the tokens to lowercase, which makes them easier

to compare or combine with other datasets. (Use the to_lower = FALSE argument to
turn off this behavior).

Now our data is in a tidy format, and we can easily use all the normal dplyr, tidyr, and ggplot2
tools.

11.2.2 Example: Jane Austen Novels

Let’s load the austen.csv data.

jaorig <- read_csv("data/austen.csv")
jaorig

Click the jaorig dataset in the environment pane or use View(jaorig) to see what’s being
read in here. Before we can do anything else we’ll need to tidy this up by unnesting the text
column into words.

jatidy <- jaorig |>
unnest_tokens(word, text)

jatidy

Let’s use the dplyr count function to count how many occurances we have for each word in
the entire corpus. The sort=TRUE option puts the most common results on top.

jatidy |>
count(word, sort = TRUE)

Not surprisingly the most common words are some of the most commonly used words in the
English language. These are known as stop words. They’re words you’ll want to filter out
before doing any text mining. There are lists of stop words online, but the tidytext package

298

data/austen.csv
https://en.wikipedia.org/wiki/Stop_words

comes with a stop_words built-in dataset with some of the most common stop words across
three different lexicons. See ?stop_words for more information.

data(stop_words)
stop_words

As in a previous chapter where we did an inner_join to link information across two different
tables by a common key, there’s also an anti_join() which takes two tibbles, x and y, and
returns all rows from x where there are not matching values in y, keeping just columns from x.
Let’s anti_join the data to the stop words. Because we chose “word” as the output variable
to unnest_tokens(), and “word” is the variable in the stop_words dataset, we don’t have to
be specific about which columns we’re joining.

jatidy |>
anti_join(stop_words)

Now there are far fewer rows than initially present. Let’s run that count again, now with the
stop words removed.

jatidy |>
anti_join(stop_words) |>
count(word, sort = TRUE)

A tibble: 13,914 x 2
word n
<chr> <int>

1 miss 1855
2 time 1337
3 fanny 862
4 dear 822
5 lady 817
6 sir 806
7 day 797
8 emma 787
9 sister 727
10 house 699
i 13,904 more rows

That’s much more in line with what we want. We have this data in a tibble. Let’s keep piping
to other operations!

299

https://dplyr.tidyverse.org/reference/join.html#join-types

jatidy |>
anti_join(stop_words) |>
count(word, sort = TRUE) |>
head(20) |>
mutate(word = reorder(word, n)) |>
ggplot(aes(word, n)) +
geom_col() +
coord_flip()

mother
home

jane
father
mind

family
friend
hope
elinor

elizabeth
house
sister

emma
day
sir

lady
dear

fanny
time
miss

0 500 1000 1500
n

w
or

d

11.3 Sentiment Analysis

Let’s start to do some high-level analysis of the text we have. Sentiment analysis4, also
called opinion mining, is the use of text mining to “systematically identify, extract, quantify,
and study affective states and subjective information.” It’s a way to try to understand the
emotional intent of words to infer whether a section of text is positive or negative, or perhaps
characterized by some other more nuanced emotion like surprise or disgust.

If you make a simplifying assumption regarding the text you have as a combination of its
individual words, you can treat the sentiment content of the whole text as the sum of the
sentiment content of the individual words. It’s a simplification, and it isn’t the only way to
approach sentiment analysis, but it’s simple and easy to do with tidy principles.

4https://en.wikipedia.org/wiki/Sentiment_analysis

300

https://en.wikipedia.org/wiki/Sentiment_analysis

To get started you’ll need a sentiment lexicon that attempt to evaluate the opinion or emotion
in text. The tidytext package contains several sentiment lexicons in the sentiments dataset.
All three of these lexicons are based on single words in the English language, assigning scores
for positive/negative sentiment, or assigning emotions like joy, anger, sadness, etc.

• nrc from Saif Mohammad and Peter Turney5 categorizes words in a binary fashion
(“yes”/“no”) into categories of positive, negative, anger, anticipation, disgust, fear, joy,
sadness, surprise, and trust.

• bing from Bing Liu and collaborators6 categorizes words in a binary fashion into positive
and negative categories.

• AFINN from Finn Arup Nielsen7 assigns words with a score that runs between -5 and 5,
with negative scores indicating negative sentiment and positive scores indicating positive
sentiment.

The built-in sentiments dataset available when you load the tidytext package contains all of
this information. You could filter it to a single lexicon with the dplyr filter() function, or
use tidytext’s get_sentiments() to get specific sentiment lexicons containing only the data
used for that lexicon.

Look at the sentiments data
data(sentiments)
sentiments
sentiments |> filter(lexicon=="nrc")
sentiments |> filter(lexicon=="bing")
sentiments |> filter(lexicon=="AFINN")

Use the built-in get_sentiments() function
get_sentiments("nrc")
get_sentiments("bing")
get_sentiments("afinn")

There are a few major caveats to be aware of.

1. The sentiment lexicons we’re using here were constructed either via crowdsourcing or by
the work of the authors, and validated using crowdsourcing, movie/restaurant reviews,
or Twitter data. It’s unknown how useful it is to apply these lexicons to text from a
completely different time and place (e.g., 200-year old fiction novels). Further, there are
other domain-specific lexicons available, e.g., for finance data, that are better used in
that context.

2. May words in the English language are fairly neutral, and aren’t included in any senti-
ment lexicon.

5http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
6https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
7http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

301

http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

3. Methods based on unigrams (single words) do not take into account qualifiers before a
word, such as in “no good” or “not true”. If you have sustained sections of sarcasm or
negated text, this could be problematic.

4. The size of the chunk of text that we use to add up single-word sentiment scores matters.
Sentiment across many paragraphs often has positive and negative sentiment averaging
out to about zero, but sentence-sized or paragraph-sized text might be better.

Figure 11.2: Workflow for sentiment analysis using tidy principles.

11.3.1 Sentiment analysis with tidy tools

Let’s look at the most common joy words in Emma. To do this we will:

1. Start with the unnested Jane Austen text data.
2. Join it to the NRC sentiment lexicon.
3. Filter it to only include “joy” words.
4. Filter for only words in Emma.
5. Count the number of occurences of each word, sorting the output with the highest on

top.

jatidy |>
inner_join(get_sentiments("nrc")) |>
filter(sentiment=="joy") |>
filter(book=="Emma") |>
count(word, sort=TRUE)

A tibble: 301 x 2

302

word n
<chr> <int>

1 good 359
2 friend 166
3 hope 143
4 happy 125
5 love 117
6 deal 92
7 found 92
8 present 89
9 kind 82
10 happiness 76
i 291 more rows

Try running the same code but replacing “joy” with “anger” or “trust.”

jatidy |>
inner_join(get_sentiments("nrc")) |>
filter(sentiment=="anger") |>
filter(book=="Emma") |>
count(word, sort=TRUE)

Let’s look at how sentiment changes over time throughout each novel.

1. Start with the unnested Jane Austen text data.
2. Join it to the ‘bing’ sentiment lexicon (positive vs negative).
3. Create a new variable that counts up each 80-line section. First note that the %/%

operator does integer division. It tells you the integer quotient without the remainder.
This is a way for us to keep track of which 80-line section of text we are counting up
negative and positive sentiment in.

4. Count the number of occurances of each sentiment (positive vs negative) in each section,
for each book.

5. Spread the sentiment column into new columns, and fill in missing values with zeros.
6. Create your own summary sentiment score that’s the total number of positive words

minus the total number of negative words.

jatidy |>
inner_join(get_sentiments("bing")) |>
mutate(section=linenumber %/% 80) |>
count(book, section, sentiment) |>
spread(sentiment, n, fill=0) |>
mutate(sentiment=positive-negative)

303

A tibble: 920 x 5
book section negative positive sentiment
<chr> <dbl> <dbl> <dbl> <dbl>

1 Emma 0 31 43 12
2 Emma 1 28 33 5
3 Emma 2 30 35 5
4 Emma 3 27 51 24
5 Emma 4 23 46 23
6 Emma 5 25 50 25
7 Emma 6 25 47 22
8 Emma 7 27 63 36
9 Emma 8 21 47 26

10 Emma 9 11 40 29
i 910 more rows

Now let’s pipe that whole thing to ggplot2 to see how the sentiment changes over the course of
each novel. Facet by book, and pass scales="free_x" so the x-axis is filled for each panel.

jatidy |>
inner_join(get_sentiments("bing")) |>
mutate(section=linenumber %/% 80) |>
count(book, section, sentiment) |>
spread(sentiment, n, fill=0) |>
mutate(sentiment=positive-negative) |>
ggplot(aes(section, sentiment)) +

geom_col() +
facet_wrap(~book, ncol = 2, scales = "free_x")

304

Pride & Prejudice Sense & Sensibility

Northanger Abbey Persuasion

Emma Mansfield Park

0 50 100 150 0 50 100 150

0 25 50 75 100 0 25 50 75 100

0 50 100 150 200 0 50 100 150 200

−20

0

20

40

−20

0

20

40

−20

0

20

40

section

se
nt

im
en

t

305

Try comparing different sentiment lexicons. You might see different results! Different lexicons
contain different ratios of positive to negative sentiment words, and thus will give you different
results. You would probably want to try a few different lexicons using a known dataset to see
what lexicon is most appropriate for your purpose. For more information on this topic, see
section 2.3 of the Tidy Text Mining book.

11.3.2 Measuring contribution to sentiment

We could also analyze word counts that contribute to each sentiment. This first joins Jane
Austen’s tidy text data to the bing lexicon and counts how many times each word-sentiment
linkage exists.

jatidy |>
inner_join(get_sentiments("bing")) |>
count(word, sentiment, sort=TRUE)

A tibble: 2,585 x 3
word sentiment n
<chr> <chr> <int>

1 miss negative 1855
2 well positive 1523
3 good positive 1380
4 great positive 981
5 like positive 725
6 better positive 639
7 enough positive 613
8 happy positive 534
9 love positive 495
10 pleasure positive 462
i 2,575 more rows

Look at the help for ?top_n. It’s similar to arranging a dataset then using head to get the
first few rows. But if we want the top n from each group, we need the top_n function. Let’s
continue the pipeline above.

1. First group by sentiment.
2. Next get the top 10 observations in each group. By default, it uses the last column here

as a ranking metric.
3. The top_n function leaves the dataset grouped. In this case we want to ungroup the

data.

306

https://www.tidytextmining.com/sentiment.html#comparing-the-three-sentiment-dictionaries

4. Let’s plot a bar plot showing the n for each word separately for positive and negative
words.

5. We could mutate word to reorder it as a factor by n.

jatidy |>
inner_join(get_sentiments("bing")) |>
count(word, sentiment, sort=TRUE) |>
group_by(sentiment) |>
top_n(10) |>
ungroup() |>
mutate(word=reorder(word, n)) |>
ggplot(aes(word, n)) +
geom_col(aes(fill=sentiment)) +
facet_wrap(~sentiment, scale="free_y") +
coord_flip()

negative positive

0 500 1000 1500 0 500 1000 1500

happiness

pleasure

love

happy

enough

better

like

great

good

well

anxious

bad

scarcely

afraid

impossible

sorry

object

doubt

poor

miss

n

w
or

d

sentiment

negative

positive

Notice that “miss” is probably erroneous here. It’s used as a title for unmarried women in
Jane Austen’s works, and should probably be excluded from analysis. You could filter this, or
you could create a custom stop words lexicon and add this to it. You could also unnest the
corpus using bigrams instead of single words, then filter to look for bigrams that start with
“miss,” counting to show the most common ones.

307

jaorig |>
unnest_tokens(bigram, text, token="ngrams", n=2) |>
filter(str_detect(bigram, "^miss")) |>
count(bigram, sort=TRUE)

A tibble: 169 x 2
bigram n
<chr> <int>

1 miss crawford 196
2 miss woodhouse 143
3 miss fairfax 98
4 miss bates 92
5 miss tilney 74
6 miss bingley 67
7 miss dashwood 55
8 miss bennet 52
9 miss morland 50
10 miss smith 48
i 159 more rows

11.4 Word and Document Frequencies

11.4.1 TF, IDF, and TF-IDF

In text mining we’re trying to get at “what is this text about?” We can start to get a sense of
this by looking at the words that make up the text, and we can start to measure measure how
important a word is by its term frequency (tf), how frequently a word occurs in a document.
When we did this we saw some common words in the English language, so we took an approach
to filter out our data first by a list of common stop words.

jatidy |>
anti_join(stop_words) |>
count(word, sort=TRUE)

Another way is to look at a term’s inverse document frequency (idf), which decreases the
weight for commonly used words and increases the weight for words that are not used very
much in a collection of documents. It’s defined as:

𝑖𝑑𝑓(term) = ln (𝑛documents
𝑛documents containing term

)

308

If you multiply the two values together, you get the tf-idf8, which is the frequency of a term
adjusted for how rarely it is used. The tf-idf measures how important a word is to a document
in a collection (or corpus) of documents, for example, to one novel in a collection of novels or
to one website in a collection of websites.

We want to use tf-idf to find the important words for the content of each document by decreas-
ing the weight for common words and increasing the weight for words that are not used very
much in a corpus of documents (in this case, the group of Jane Austen’s novels). Calculating
tf-idf attempts to find the words that are important (i.e., common) in a text, but not too
common.

You could do this all manually, but there’s a nice function in the tidytext package called
bind_tf_idf that does this for you. It takes a tidy text dataset as input with one row per
word, per document. One column (word here) contains the terms/tokens, one column contains
the documents (book in this case), and the last necessary column contains the counts, how
many times each document contains each term (n in this example).

Let’s start by counting the number of occurances of each word in each book:

jatidy |>
count(book, word, sort=TRUE)

Then we simply pipe that to the bind_tf_idf function, giving it the column names for the
word, document, and count column (word, book, and n here):

jatidy |>
count(word, book, sort=TRUE) |>
bind_tf_idf(word, book, n)

You’ll see that the idf (and the tf-idf) are zero for really common words. These are all words
that appear in all six of Jane Austen’s novels, so the idf is zero. This is how this approach
decreases the weight for common words. The inverse document frequency will be a higher num-
ber for words that occur in fewer of the documents in the collection. Let’s arrange descending
by tf-idf (tf_idf with an underscore).

jatidy |>
count(word, book, sort=TRUE) |>
bind_tf_idf(word, book, n) |>
arrange(desc(tf_idf))

A tibble: 40,379 x 6
word book n tf idf tf_idf

8https://en.wikipedia.org/wiki/Tf%E2%80%93idf

309

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

<chr> <chr> <int> <dbl> <dbl> <dbl>
1 elinor Sense & Sensibility 623 0.00519 1.79 0.00931
2 marianne Sense & Sensibility 492 0.00410 1.79 0.00735
3 crawford Mansfield Park 493 0.00307 1.79 0.00551
4 darcy Pride & Prejudice 373 0.00305 1.79 0.00547
5 elliot Persuasion 254 0.00304 1.79 0.00544
6 emma Emma 786 0.00488 1.10 0.00536
7 tilney Northanger Abbey 196 0.00252 1.79 0.00452
8 weston Emma 389 0.00242 1.79 0.00433
9 bennet Pride & Prejudice 294 0.00241 1.79 0.00431
10 wentworth Persuasion 191 0.00228 1.79 0.00409
i 40,369 more rows

No surprise - we see all proper nouns, names that are important for each novel. None of them
occur in all of novels, and they are important, characteristic words for each text within the
entire corpus of Jane Austen’s novels. Let’s visualize this data!

jatidy |>
count(word, book, sort=TRUE) |>
bind_tf_idf(word, book, n) |>
arrange(desc(tf_idf)) |>
group_by(book) |>
top_n(15) |>
ungroup() |>
mutate(word=reorder(word, tf_idf)) |>
ggplot(aes(word, tf_idf)) +
geom_col() +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~book, ncol = 2, scales = "free") +
coord_flip()

310

Pride & Prejudice Sense & Sensibility

Northanger Abbey Persuasion

Emma Mansfield Park

0.000 0.002 0.004 0.0000 0.0025 0.0050 0.0075

0.000 0.001 0.002 0.003 0.004 0.000 0.002 0.004

0.000 0.002 0.004 0.000 0.002 0.004

grant
sotherton

yates
susan

fanny's
crawford's

julia
thomas

mansfield
norris

rushworth
bertram

fanny
edmund
crawford

musgroves
croft

anne
louisa

harville
benwick

henrietta
lyme

kellynch
uppercross

musgrove
russell
walter

wentworth
elliot

edward
norland
elinor's
palmer

marianne's
middleton

barton
lucy

ferrars
brandon

willoughby
jennings

dashwood
marianne

elinor

perry
emma's
randalls
harriet's
highbury

bates
hartfield

harriet
churchill

fairfax
woodhouse

elton
knightley

weston
emma

thorpe's
woodston
morland's

allen's
general's

tilney's
fullerton

catherine's
northanger

eleanor
isabella

allen
morland

thorpe
catherine

tilney

bingley's
rosings

pemberley
meryton

lucas
netherfield

gardiner
longbourn

lizzy
lydia

collins
wickham
elizabeth

bingley
bennet

darcy

tf−idf

311

11.4.2 Project Gutenberg

Project Gutenberg (https://www.gutenberg.org/) is a collection of freely available books that
are in the public domain. You can get most books in all kinds of different formats (plain
text, HTML, epub/kindle, etc). The gutenbergr package includes tools for downloading
books (and stripping header/footer information), and a complete dataset of Project Gutenberg
metadata that can be used to find words of interest. Includes:

• A function gutenberg_download() that downloads one or more works from Project
Gutenberg by ID: e.g., gutenberg_download(84) downloads the text of Frankenstein.

• Metadata for all Project Gutenberg works as R datasets, so that they can be searched
and filtered:

– gutenberg_metadata contains information about each work, pairing Gutenberg ID
with title, author, language, etc

– gutenberg_authors contains information about each author, such as aliases and
birth/death year

– gutenberg_subjects contains pairings of works with Library of Congress subjects
and topics

Let’s use a different corpus of documents, to see what terms are important in a different set of
works. Let’s download some classic science texts from Project Gutenberg and see what terms
are important in these works, as measured by tf-idf. We’ll use three classic physics texts, and
a classic Darwin text. Let’s use:

• Discourse on Floating Bodies by Galileo Galilei: http://www.gutenberg.org/ebooks/377
29

• Treatise on Light by Christiaan Huygens: http://www.gutenberg.org/ebooks/14725
• Experiments with Alternate Currents of High Potential and High Frequency by Nikola

Tesla: http://www.gutenberg.org/ebooks/13476
• On the Origin of Species By Means of Natural Selection by Charles Darwin: http:

//www.gutenberg.org/ebooks/5001

These might all be physics classics, but they were written across a 300-year timespan, and
some of them were first written in other languages and then translated to English.

library(gutenbergr)
sci <- gutenberg_download(c(37729, 14725, 13476, 1228), meta_fields = "author")

Now that we have the texts, let’s use unnest_tokens() and count() to find out how many
times each word was used in each text. Let’s assign this to an object called sciwords. Let’s
go ahead and add the tf-idf also.

312

https://www.gutenberg.org/
https://cran.r-project.org/web/packages/gutenbergr/vignettes/intro.html
http://www.gutenberg.org/ebooks/37729
http://www.gutenberg.org/ebooks/37729
http://www.gutenberg.org/ebooks/14725
http://www.gutenberg.org/ebooks/13476
http://www.gutenberg.org/ebooks/5001
http://www.gutenberg.org/ebooks/5001

scitidy <- sci |>
unnest_tokens(word, text)

sciwords <- scitidy |>
count(word, author, sort = TRUE) |>
bind_tf_idf(word, author, n)

sciwords

A tibble: 16,992 x 6
word author n tf idf tf_idf
<chr> <chr> <int> <dbl> <dbl> <dbl>

1 the Darwin, Charles 10287 0.0656 0 0
2 of Darwin, Charles 7849 0.0501 0 0
3 and Darwin, Charles 4439 0.0283 0 0
4 in Darwin, Charles 4016 0.0256 0 0
5 the Galilei, Galileo 3760 0.0935 0 0
6 to Darwin, Charles 3605 0.0230 0 0
7 the Tesla, Nikola 3604 0.0913 0 0
8 the Huygens, Christiaan 3553 0.0928 0 0
9 a Darwin, Charles 2470 0.0158 0 0
10 that Darwin, Charles 2083 0.0133 0 0
i 16,982 more rows

Now let’s do the same thing we did before with Jane Austen’s novels:

sciwords |>
group_by(author) |>
top_n(15) |>
ungroup() |>
mutate(word=reorder(word, tf_idf)) |>
ggplot(aes(word, tf_idf)) +
geom_col() +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~author, ncol = 2, scales = "free") +
coord_flip()

313

Huygens, Christiaan Tesla, Nikola

Darwin, Charles Galilei, Galileo

0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006

0.000 0.002 0.004 0.006 0.000 0.002 0.004 0.006

figures

superficies

rampart

cone

ebony

prisme

gravity

natation

altitude

sidenote

grave

aristotle

equall

hath

water

button

condenser

impulses

wires

current

electrode

frequency

frequencies

conducting

gas

bulb

energy

fig

wire

coil

inhabitants

individuals

genus

life

intermediate

modification

birds

characters

groups

selection

varieties

genera

animals

plants

species

wave

cm

ethereal

rc

refractions

ac

ellipse

movement

ab

rays

curve

spheroid

ray

crystal

refraction

tf−idf

314

We see some weird things here. We see “fig” for Tesla, but I doubt he was writing about a fruit
tree. We see things like ab, ac, rc, etc for Huygens – these are names of rays and angles, etc.
We could create a custom stop words dictionary to remove these. Let’s create a stop words
data frame, then anti join that before plotting.

mystopwords <- tibble(word=c("ab", "ac", "rc", "cm", "cg", "cb", "ak", "bn", "fig"))
sciwords |>
anti_join(mystopwords) |>
group_by(author) |>
top_n(15) |>
ungroup() |>
mutate(word=reorder(word, tf_idf)) |>
ggplot(aes(word, tf_idf)) +
geom_col() +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~author, ncol = 2, scales = "free") +
coord_flip()

11.5 Topic Modeling

Topic modeling9 is a method for unsupervised classification of such documents, similar to
clustering on numeric data, which finds natural groups of items even when we’re not sure
what we’re looking for. It’s a way to find abstract “topics” that occur in a collection of
documents, and it’s frequently used to find hidden semantic structures in a text body. Topic
models can help us understand large collections of unstructured text bodies. In addition
to text mining tasks like what we’ll do here, topic models have been used to detect useful
structures in data such as genetic information, images, and networks, and have also been used
in bioinformatics.10

Latent Dirichlet Allocation11 is one of the most common algorithms used in topic modeling.
LDA treats each document as a mixture of topics, and each topic as a mixture of words:

1. Each document is a mixture of topics. Each document contains words from several topics
in particular proportions. For example, in a two-topic model we could say “Document 1
is 90% topic A and 10% topic B, while Document 2 is 30% topic A and 70% topic B.”

2. Every topic is a mixture of words. Imagine a two-topic model of American news, with
one topic for “politics” and one for “entertainment.” Common words in the politics topic
might be “President”, “Congress”, and “government”, while the entertainment topic may

9https://en.wikipedia.org/wiki/Topic_model
10Blei, David (April 2012). “Probabilistic Topic Models”. Communications of the ACM. 55 (4): 77-84.

doi:10.1145/2133806.2133826
11https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

315

https://en.wikipedia.org/wiki/Topic_model
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

be made up of words such as “movies”, “television”, and “actor”. Words can be shared
between topics; a word like “budget” might appear in both equally.

LDA attempts to estimate both of these at the same time: finding words associated with each
topic, while simutaneously determining the mixture of topics that describes each document.

11.5.1 Document-term matrix

Before we can get started in topic modeling we need to take a look at another common format
for storing text data that’s not the tidy one-token-per-document-per-row format we’ve used so
far (what we get from unnest_tokens). Another very common structure that’s used by other
text mining packages (such as tm or quanteda) is the document-term matrix12 (DTM).
This is a matrix where:

• Each row represents one document (such as a book or article).
• Each column represents one term.
• Each value contains the number of appearances of that term in that document.

Since most pairings of document and term do not occur (they have the value zero), DTMs
are usually implemented as sparse matrices. These objects can be treated as though they
were matrices (for example, accessing particular rows and columns), but are stored in a more
efficient format. DTM objects can’t be used directly with tidy tools, just as tidy data frames
can’t be used as input for other text mining packages. The tidytext package provides two
verbs that convert between the two formats.

• tidy() turns a DTM into a tidy data frame. This verb comes from the broom package.
• cast() turns a tidy one-term-per-row data frame into a matrix. tidytext provides three

variations of this verb, each converting to a different type of matrix:

– cast_sparse(): converts to a sparse matrix from the Matrix package.
– cast_dtm(): converts to a DocumentTermMatrix object from tm.
– cast_dfm(): converts to a dfm object from quanteda.

First let’s load the AssociatedPress data from the topicmodels package. Take a look. We
can see that the AssociatedPress data is a DTM with 2,246 documents (AP articles from
1988) and 10,473 terms. The 99% sparsity indicates that the matrix is almost complete made
of zeros, i.e., almost all the document-term pairs are zero – most terms are not used in most
documents. If we want to use the typical tidy tools we’ve used above, we’ll use the tidy()
function to melt this matrix into a tidy one-token-per-document-per-row format. Notice that
this only returns the 302,031 non-zero entries.

12https://en.wikipedia.org/wiki/Document-term_matrix

316

https://en.wikipedia.org/wiki/Document-term_matrix
https://en.wikipedia.org/wiki/Document-term_matrix

library(topicmodels)
data(AssociatedPress)
AssociatedPress
tidy(AssociatedPress)

First let’s use the LDA() function from the topicmodels package, setting k = 2, to create a
two-topic LDA model. This function returns an object containing the full details of the model
fit, such as how words are associated with topics and how topics are associated with documents.
Fitting the model is easy. For the rest of this section we’ll be exploring and interpreting the
model.

set a seed so that the output of the model is predictable
ap_lda <- LDA(AssociatedPress, k = 2, control=list(seed=1234))
ap_lda

11.5.2 Word-topic probabilities

Displaying the model itself, ap_lda isn’t that interesting. The tidytext package provides a
tidy method for extracting the per-topic-per-word probabilities, called 𝛽 (“beta”), from the
model.

ap_topics <- tidy(ap_lda, matrix = "beta")
ap_topics

A tibble: 20,946 x 3
topic term beta
<int> <chr> <dbl>

1 1 aaron 1.69e-12
2 2 aaron 3.90e- 5
3 1 abandon 2.65e- 5
4 2 abandon 3.99e- 5
5 1 abandoned 1.39e- 4
6 2 abandoned 5.88e- 5
7 1 abandoning 2.45e-33
8 2 abandoning 2.34e- 5
9 1 abbott 2.13e- 6
10 2 abbott 2.97e- 5
i 20,936 more rows

This returns a one-topic-per-term-per-row format. For each combination, the model computes
the probability of that term being generated from that topic. For example, the term “aaron”

317

has a 1.686917 × 10−12 probability of being generated from topic 1, but a 3.8959408 × 10−5

probability of being generated from topic 2.

We could use dplyr’s top_n() to find the 10 terms that are most common within each topic.
Because this returns a tidy data frame, we could easily continue piping to ggplot2.

What are the top words for each topic?
ap_topics |>
group_by(topic) |>
top_n(10) |>
ungroup() |>
arrange(topic, desc(beta))

Continue piping to ggplot2
ap_topics |>
group_by(topic) |>
top_n(10) |>
ungroup() |>
arrange(topic, desc(beta)) |>
mutate(term = reorder(term, beta)) |>
ggplot(aes(term, beta)) +
geom_col() +
facet_wrap(~topic, scales = "free") +
coord_flip()

318

1 2

0.0000 0.0025 0.0050 0.0075 0.0100 0.000 0.002 0.004 0.006

states

years

two

bush

soviet

people

government

new

president

i

market

company

two

last

people

billion

new

year

million

percent

beta

te
rm

This visualization lets us understand the two topics that were extracted from the articles. Com-
mon words in topic 1 include “percent”, “million”, “billion”, and “company”. Perhaps topic 1
represents business or financial news. Common in topic 2 include “president”, “government”,
and “soviet”, suggeting that this topic represents political news. Note that some words, such
as “new” and “people”, are common within both topics. This is an advantage (as opposed to
“hard clustering” methods): topics used in natural language could have some overlap in terms
of words.

Let’s look at the terms that had the greatest difference in 𝛽 between topic 1 and topic 2. This
can be estimated based on the log ratio of the two: log2(𝛽2

𝛽1
) (a log ratio is useful because it

makes the difference symmetrical: 𝛽2 being twice as large leads to a log ratio of 1, while 𝛽1
being twice as large results in -1). To constrain it to a set of especially relevant words, we can
filter for relatively common words, such as those that have a 𝛽 greater than 1/1000 in at least
one topic.

First let’s turn 1 and 2 into topic1 and topic2 so that after the spread we’ll easily be able
to work with those columns.

ap_topics |>
mutate(topic = paste0("topic", topic)) |>
spread(topic, beta) |>
filter(topic1 > .001 | topic2 > .001) |>
mutate(log_ratio = log2(topic2 / topic1))

319

We could continue piping to ggplot2. First, let’s create a new variable we’ll group on, which is
the direction of imbalance. We’ll also create a variable showing the absolute value of the log
ratio, which is a directionless value indicating the magnitude of the effect. This lets us select
the top 10 terms most associated with either topic1 or topic2.

ap_topics |>
mutate(topic = paste0("topic", topic)) |>
spread(topic, beta) |>
filter(topic1 > .001 | topic2 > .001) |>
mutate(log_ratio = log2(topic2 / topic1)) |>
mutate(direction = (log_ratio>0)) |>
mutate(absratio=abs(log_ratio)) |>
group_by(direction) |>
top_n(10) |>
ungroup() |>
mutate(term = reorder(term, log_ratio)) |>
ggplot(aes(term, log_ratio)) +
geom_col() +
labs(y = "Log2 ratio of beta in topic 2 / topic 1") +
coord_flip()

320

yen

index

cents

average

stock

dollar

prices

rate

fell

rates

prison

presidential

senate

campaign

vote

trial

gorbachev

republican

dukakis

democratic

−100 −50 0 50
Log2 ratio of beta in topic 2 / topic 1

te
rm

321

We can see that the words more common in topic 2 include political parties such as “democratic”
and “republican”, as well as politician’s names such as “dukakis” and “gorbachev”. Topic 1
was more characterized by currencies like “yen” and “dollar”, as well as financial terms such as
“index”, “prices” and “rates”. This helps confirm that the two topics the algorithm identified
were political and financial news.

11.5.3 Document-topic probabilities

Above we estimated the per-topic-per-word probabilities, 𝛽 (“beta”). LDA also models each
document as a mixture of topics. Let’s look at the per-document-per-topic probabilities, 𝛾
(“gamma”), with the matrix = "gamma" argument to tidy().

ap_documents <- tidy(ap_lda, matrix = "gamma")
ap_documents

A tibble: 4,492 x 3
document topic gamma

<int> <int> <dbl>
1 1 1 0.248
2 2 1 0.362
3 3 1 0.527
4 4 1 0.357
5 5 1 0.181
6 6 1 0.000588
7 7 1 0.773
8 8 1 0.00445
9 9 1 0.967
10 10 1 0.147
i 4,482 more rows

These values represent the estimated proportion of words from that document that are gener-
ated from that topic. For example, the the model estimates only about 25% of the words in
document 1 were generated from topic 1.

Most of these documents were drawn from a mix of the two topics, but document 6 was drawn
almost entirely from topic 2, having a 𝛾 from topic 1 close to zero. To check this answer, we
could tidy() the document-term matrix.

tidy(AssociatedPress) |>
filter(document == 6) |>
arrange(desc(count))

322

A tibble: 287 x 3
document term count

<int> <chr> <dbl>
1 6 noriega 16
2 6 panama 12
3 6 jackson 6
4 6 powell 6
5 6 administration 5
6 6 economic 5
7 6 general 5
8 6 i 5
9 6 panamanian 5

10 6 american 4
i 277 more rows

Based on the most common words, this looks like an article about the relationship between the
American government and Panamanian dictator Manuel Noriega, which means the algorithm
was right to place it in topic 2 (as political/national news).

11.6 Case Studies & Examples

11.6.1 The Great Library Heist

From section 6.2 of Tidy Text Mining.

When examining a statistical method, it can be useful to try it on a very simple case where
you know the “right answer”. For example, we could collect a set of documents that definitely
relate to four separate topics, then perform topic modeling to see whether the algorithm can
correctly distinguish the four groups. This lets us double-check that the method is useful, and
gain a sense of how and when it can go wrong. We’ll try this with some data from classic
literature.

Suppose a vandal has broken into your study and torn apart four of your books:

• Great Expectations by Charles Dickens
• The War of the Worlds by H.G. Wells
• Twenty Thousand Leagues Under the Sea by Jules Verne
• Pride and Prejudice by Jane Austen

This vandal has torn the books into individual chapters, and left them in one large pile. How
can we restore these disorganized chapters to their original books? This is a challenging prob-
lem since the individual chapters are unlabeled: we don’t know what words might distinguish

323

https://en.wikipedia.org/wiki/Manuel_Noriega
https://www.tidytextmining.com/topicmodeling.html#library-heist

them into groups. We’ll thus use topic modeling to discover how chapters cluster into distinct
topics, each of them (presumably) representing one of the books.

We’ll retrieve the text of these four books using the gutenbergr package:

library(gutenbergr)
titles <- c("Twenty Thousand Leagues under the Sea",

"The War of the Worlds",
"Pride and Prejudice",
"Great Expectations")

books <- gutenberg_works(title %in% titles) |>
gutenberg_download(meta_fields = "title")

You’ll want to start by dividing the books these into chapters, use tidytext’s unnest_tokens()
to separate them into words, then remove stop_words. You’ll be treating every chapter
as a separate “document”, each with a name like Great Expectations_1 or Pride and
Prejudice_11. You’ll cast this into a DTM then run LDA. You’ll look at the word-topic proba-
bilities to try to get a sense of which topic represents which book, and you’ll use document-topic
probabilities to assign chapters to their books. See section 6.2 of Tidy Text Mining for code
and a walk-through.

11.6.2 Happy Galentine’s Day!

Source: https://suzan.rbind.io/2018/02/happy-galentines-day/

This analysis does a tidy text mining analysis of several scripts from Parks and Recreation.
In addition to the kinds of analyses we’ve performed here, it also illustrates some additional
functionality for extracting text from PDF documents (the scripts were only available as
PDFs).

324

https://www.tidytextmining.com/topicmodeling.html#library-heist
https://suzan.rbind.io/2018/02/happy-galentines-day/

325

11.6.3 Who wrote the anti-Trump New York Times op-ed?

Source: http://varianceexplained.org/r/op-ed-text-analysis/

In September 2018 the New York Times published an anonymous op-ed, “I Am Part of the
Resistance Inside the Trump Administration”, written by a “senior official in the Trump ad-
ministration”. Lots of data scientists tried to use text-mining techniques to determine who
wrote this op-ed. This analysis compares the text of the op-ed to the set of documents repre-
senting “senior officials.” In addition to what we’ve covered here, this also covers scraping text
from Twitter accounts, and methods for comparing TF-IDF vectors using cosine similarity,
which was touched on in section 4.2 of Tidy Text Mining.

326

http://varianceexplained.org/r/op-ed-text-analysis/
https://www.nytimes.com/2018/09/05/opinion/trump-white-house-anonymous-resistance.html
https://www.nytimes.com/2018/09/05/opinion/trump-white-house-anonymous-resistance.html
https://www.tidytextmining.com/ngrams.html#counting-and-correlating-pairs-of-words-with-the-widyr-package

11.6.4 Seinfeld dialogues

Source: https://pradeepadhokshaja.wordpress.com/2018/08/06/looking-at-
seinfeld-dialogues-using-tidytext/

Data: https://www.kaggle.com/thec03u5/seinfeld-chronicles

This analysis uses the tidytext package to analyze the full text of the entire Seinfeld series
that ran 1989-1998.

11.6.5 Sentiment analysis in Shakespeare tragedies

Source: https://peerchristensen.netlify.com/post/fair-is-foul-and-foul-is-fair-a-
tidytext-entiment-analysis-of-shakespeare-s-tragedies/

This analysis illustrates a tidytext approach to examine the use of sentiment words in the
tragedies written by William Shakespeare.

327

https://pradeepadhokshaja.wordpress.com/2018/08/06/looking-at-seinfeld-dialogues-using-tidytext/
https://pradeepadhokshaja.wordpress.com/2018/08/06/looking-at-seinfeld-dialogues-using-tidytext/
https://www.kaggle.com/thec03u5/seinfeld-chronicles
https://peerchristensen.netlify.com/post/fair-is-foul-and-foul-is-fair-a-tidytext-entiment-analysis-of-shakespeare-s-tragedies/
https://peerchristensen.netlify.com/post/fair-is-foul-and-foul-is-fair-a-tidytext-entiment-analysis-of-shakespeare-s-tragedies/

Figure 11.3: Plays ranked by ratio of negative sentiment words

Figure 11.4: Sentiment over time for Romeo & Juliet

328

11.6.6 Authorship of the Federalist Papers

Source: https://kanishka.xyz/2018/my-first-few-open-source-contributions-
authorship-attribution-of-the-federalist-papers/

The Federalist Papers were written as essays between 1787-1788 by Alexander Hamilton, John
Jay and James Madison to promote the ratification of the constitution. They were all authored
under the pseudonym ‘Publius’, which was a tribute to the founder of the Roman Republic,
but were then confirmed to be written by the three authors where Hamilton wrote 51 essays,
Jay wrote 5, Madison wrote 14, and Hamilton and Madison co-authored 3. The authorship of
the remaining 12 has been in dispute. This post uses tidy text mining and some additional
functionality to try to determine who authored the 12 in dispute.

329

https://kanishka.xyz/2018/my-first-few-open-source-contributions-authorship-attribution-of-the-federalist-papers/
https://kanishka.xyz/2018/my-first-few-open-source-contributions-authorship-attribution-of-the-federalist-papers/

330

12 Count-Based Differential Expression
Analysis of RNA-seq Data

This is an introduction to RNAseq analysis involving reading in quantitated gene expression
data from an RNA-seq experiment, exploring the data using base R functions and then analysis
with the DESeq2 package.

Recommended reading:

1. Conesa et al. A survey of best practices for RNA-seq data analysis. Genome Biology
17:13 (2016).

2. Soneson et al. “Differential analyses for RNA-seq: transcript-level estimates improve
gene-level inferences.” F1000Research 4 (2015).

3. Abstract and introduction sections of Himes et al. “RNA-Seq transcriptome profiling
identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine func-
tion in airway smooth muscle cells.” PLoS ONE 9.6 (2014): e99625.

4. Review the Introduction (10.1), Tibbles vs. data.frame (10.3), and Interacting with Older
Code (10.4) sections of the R for Data Science book. We will initially be using
the read_* functions from the readr package. These functions load data into a tibble
instead of R’s traditional data.frame. Tibbles are data frames, but they tweak some
older behaviors to make life a little easier. These sections explain the few key small
differences between traditional data.frames and tibbles.

Data needed:

• Length-scaled count matrix (i.e., countData): airway_scaledcounts.csv
• Sample metadata (i.e., colData): airway_metadata.csv
• Gene Annotation data: annotables_grch38.csv

12.1 Background

12.1.1 The biology

The data for this chapter comes from:

331

http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
https://f1000research.com/articles/4-1521/v2
https://f1000research.com/articles/4-1521/v2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://r4ds.had.co.nz/tibbles.html#introduction-4
http://r4ds.had.co.nz/tibbles.html#tibbles-vs.data.frame
http://r4ds.had.co.nz/tibbles.html#interacting-with-older-code
http://r4ds.had.co.nz/tibbles.html#interacting-with-older-code
http://r4ds.had.co.nz/tibbles.html
http://readr.tidyverse.org/
data/airway_scaledcounts.csv
data/airway_metadata.csv
data/annotables_grch38.csv

Himes et al. “RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Gluco-
corticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth
Muscle Cells.” PLoS ONE. 2014 Jun 13;9(6):e99625. PMID: 24926665.

Glucocorticoids are potent inhibitors of inflammatory processes, and are widely used to treat
asthma because of their anti-inflammatory effects on airway smooth muscle (ASM) cells.
But what’s the molecular mechanism? This study used RNA-seq to profile gene expression
changes in four different ASM cell lines treated with dexamethasone, a synthetic glucocorticoid
molecule. They found a number of differentially expressed genes comparing dexamethasone-
treated ASM cells to control cells, but focus much of the discussion on a gene called CRISPLD2.
This gene encodes a secreted protein known to be involved in lung development, and SNPs
in this gene in previous GWAS studies are associated with inhaled corticosteroid resistance
and bronchodilator response in asthma patients. They confirmed the upregulated CRISPLD2
mRNA expression with qPCR and increased protein expression using Western blotting.

They did their analysis using Tophat and Cufflinks. We’re taking a different approach and us-
ing an R package called DESeq2. Click here to read more on DESeq2 and other approaches.

12.1.2 Data pre-processing

Analyzing an RNAseq experiment begins with sequencing reads. There are many ways to
begin analyzing this data, and you should check out the three papers below to get a sense of
other analysis strategies. In the workflow we’ll use here, sequencing reads were pseudoaligned
to a reference transcriptome and the abundance of each transcript quantified using kallisto
(software, paper). Transcript-level abundance estimates were then summarized to the gene
level to produce length-scaled counts using txImport (software, paper), suitable for using in
count-based analysis tools like DESeq. This is the starting point - a “count matrix,” where
each cell indicates the number of reads mapping to a particular gene (in rows) for each sample
(in columns). This is one of several potential workflows, and relies on having a well-annotated
reference transcriptome. However, there are many well-established alternative analysis paths,
and the goal here is to provide a reference point to acquire fundamental skills that will be
applicable to other bioinformatics tools and workflows.

1. Conesa, A. et al. “A survey of best practices for RNA-seq data analysis.” Genome Biology
17:13 (2016).

2. Soneson, C., Love, M. I. & Robinson, M. D. “Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences.” F1000Res. 4:1521 (2016).

3. Griffith, Malachi, et al. “Informatics for RNA sequencing: a web resource for analysis
on the cloud.” PLoS Comput Biol 11.8: e1004393 (2015).

This data was downloaded from GEO (GSE:GSE52778). You can read more about how the
data was processed by going over the slides. If you’d like to see the code used for the upstream
pre-processing with kallisto and txImport, see the code.

332

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099625
http://www.ncbi.nlm.nih.gov/pubmed/24926665
http://rdcu.be/gk0S
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://pachterlab.github.io/kallisto/about
http://www.nature.com/nbt/journal/v34/n5/full/nbt.3519.html
https://bioconductor.org/packages/tximport
https://f1000research.com/articles/4-1521/v2
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
https://f1000research.com/articles/4-1521/v2
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778
https://github.com/bioconnector/workshops/blob/0785f9ffbab87f451f35d52bf48f2fa228e8327a/_dev/airway_kallisto/airway_kallisto_tximport.R

12.1.3 Data structure

We’ll come back to this again later, but the data at our starting point looks like this (note:
this is a generic schematic - our genes are not actually geneA and geneB, and our samples
aren’t called ctrl_1, ctrl_2, etc.):

That is, we have two tables:

1. The “count matrix” (called the countData in DESeq-speak) – where genes are in rows
and samples are in columns, and the number in each cell is the number of reads that
mapped to exons in that gene for that sample: airway_scaledcounts.csv.

2. The sample metadata (called the colData in DESeq-speak) – where samples are in rows
and metadata about those samples are in columns: airway_metadata.csv. It’s called
the colData because this table supplies metadata/information about the columns of the
countData matrix. Notice that the first column of colData must match the column
names of countData (except the first, which is the gene ID column).1

1This only works when using the argument tidy=TRUE when creating the DESeqDataSetFromMatrix().

333

data/airway_scaledcounts.csv
data/airway_metadata.csv

12.2 Import data

First, let’s load the readr, dplyr, and ggplot2 packages. Then let’s import our data with
readr’s read_csv() function (note: not read.csv()). Let’s read in the actual count data
and the experimental metadata.

library(readr)
library(dplyr)
library(ggplot2)

mycounts <- read_csv("data/airway_scaledcounts.csv")
metadata <- read_csv("data/airway_metadata.csv")

Now, take a look at each.

mycounts

A tibble: 38,694 x 9
ensgene SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ENSG000000~ 723 486 904 445 1170 1097
2 ENSG000000~ 0 0 0 0 0 0
3 ENSG000000~ 467 523 616 371 582 781
4 ENSG000000~ 347 258 364 237 318 447
5 ENSG000000~ 96 81 73 66 118 94
6 ENSG000000~ 0 0 1 0 2 0
7 ENSG000000~ 3413 3916 6000 4308 6424 10723
8 ENSG000000~ 2328 1714 2640 1381 2165 2262
9 ENSG000000~ 670 372 692 448 917 807

10 ENSG000000~ 426 295 531 178 740 651
i 38,684 more rows
i 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>

metadata

A tibble: 8 x 4
id dex celltype geo_id
<chr> <chr> <chr> <chr>

1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863

334

3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
7 SRR1039520 control N061011 GSM1275874
8 SRR1039521 treated N061011 GSM1275875

Notice something here. The sample IDs in the metadata sheet (SRR1039508, SRR1039509,
etc.) exactly match the column names of the countdata, except for the first column, which
contains the Ensembl gene ID. This is important, and we’ll get more strict about it later on.

12.3 Poor man’s DGE

Let’s look for differential gene expression. Note: this analysis is for demonstration
only. NEVER do differential expression analysis this way!

Let’s start with an exercise.

Exercise 1

If we look at our metadata, we see that the control samples are SRR1039508, SRR1039512,
SRR1039516, and SRR1039520. This bit of code will take the mycounts data, mutate() it
to add a column called controlmean, then select() only the gene name and this newly
created column, and assigning the result to a new object called meancounts. (Hint:
mycounts |> mutate(...) |> select(...))

meancounts <- mycounts |>
mutate(controlmean = (SRR1039508+SRR1039512+SRR1039516+SRR1039520)/4) |>
select(ensgene, controlmean)

meancounts

A tibble: 38,694 x 2
ensgene controlmean
<chr> <dbl>

1 ENSG00000000003 901.
2 ENSG00000000005 0
3 ENSG00000000419 520.
4 ENSG00000000457 340.
5 ENSG00000000460 97.2
6 ENSG00000000938 0.75
7 ENSG00000000971 5219
8 ENSG00000001036 2327

335

9 ENSG00000001084 756.
10 ENSG00000001167 528.
i 38,684 more rows

Exercise 2

Build off of this code, mutate() it once more (prior to the select()) function, to add
another column called treatedmean that takes the mean of the expression values of
the treated samples. Then select() only the ensgene, controlmean and treatedmean
columns, assigning it to a new object called meancounts.

A tibble: 38,694 x 3
ensgene controlmean treatedmean
<chr> <dbl> <dbl>

1 ENSG00000000003 901. 658
2 ENSG00000000005 0 0
3 ENSG00000000419 520. 546
4 ENSG00000000457 340. 316.
5 ENSG00000000460 97.2 78.8
6 ENSG00000000938 0.75 0
7 ENSG00000000971 5219 6688.
8 ENSG00000001036 2327 1786.
9 ENSG00000001084 756. 578
10 ENSG00000001167 528. 348.
i 38,684 more rows

Exercise 3

Directly comparing the raw counts is going to be problematic if we just happened to
sequence one group at a higher depth than another. Later on we’ll do this analysis
properly, normalizing by sequencing depth per sample using a better approach. But for
now, summarize() the data to show the sum of the mean counts across all genes for each
group. Your answer should look like this:

A tibble: 1 x 2
`sum(controlmean)` `sum(treatedmean)`

<dbl> <dbl>
1 23005324. 22196524.

336

Exercise 4

Create a scatter plot showing the mean of the treated samples against the mean of the
control samples.

0e+00

1e+05

2e+05

3e+05

0e+00 1e+05 2e+05 3e+05
controlmean

tr
ea

te
dm

ea
n

Exercise 5

Wait a sec. There are 60,000-some rows in this data, but I’m only seeing a few dozen
dots at most outside of the big clump around the origin. Try plotting both axes on a log
scale (hint: ... + scale_..._log10())

337

1e+01

1e+03

1e+05

1e+01 1e+03 1e+05
controlmean

tr
ea

te
dm

ea
n

We can find candidate differentially expressed genes by looking for genes with a large change
between control and dex-treated samples. We usually look at the 𝑙𝑜𝑔2 of the fold change,
because this has better mathematical properties. On the absolute scale, upregulation goes
from 1 to infinity, while downregulation is bounded by 0 and 1. On the log scale, upregulation
goes from 0 to infinity, and downregulation goes from 0 to negative infinity. So, let’s mutate
our meancounts object to add a log2foldchange column. Optionally pipe this to View().

meancounts |> mutate(log2fc=log2(treatedmean/controlmean))

A tibble: 38,694 x 4
ensgene controlmean treatedmean log2fc
<chr> <dbl> <dbl> <dbl>

1 ENSG00000000003 901. 658 -0.453
2 ENSG00000000005 0 0 NaN
3 ENSG00000000419 520. 546 0.0690
4 ENSG00000000457 340. 316. -0.102
5 ENSG00000000460 97.2 78.8 -0.304
6 ENSG00000000938 0.75 0 -Inf
7 ENSG00000000971 5219 6688. 0.358
8 ENSG00000001036 2327 1786. -0.382
9 ENSG00000001084 756. 578 -0.387
10 ENSG00000001167 528. 348. -0.600
i 38,684 more rows

338

There are a couple of “weird” results. Namely, the NaN (“not a number”) and -Inf (negative
infinity) results. The NaN is returned when you divide by zero and try to take the log. The
-Inf is returned when you try to take the log of zero. It turns out that there are a lot of genes
with zero expression. Let’s filter our meancounts data, mutate it to add the 𝑙𝑜𝑔2(𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒),
and when we’re happy with what we see, let’s reassign the result of that operation back to the
meancounts object. (Note: this is destructive. If you’re coding interactively like we’re doing
now, before you do this it’s good practice to see what the result of the operation is prior to
making the reassignment.)

Try running the code first, prior to reassigning.
meancounts <- meancounts |>
filter(controlmean>0 & treatedmean>0) |>
mutate(log2fc=log2(treatedmean/controlmean))

meancounts

A tibble: 21,817 x 4
ensgene controlmean treatedmean log2fc
<chr> <dbl> <dbl> <dbl>

1 ENSG00000000003 901. 658 -0.453
2 ENSG00000000419 520. 546 0.0690
3 ENSG00000000457 340. 316. -0.102
4 ENSG00000000460 97.2 78.8 -0.304
5 ENSG00000000971 5219 6688. 0.358
6 ENSG00000001036 2327 1786. -0.382
7 ENSG00000001084 756. 578 -0.387
8 ENSG00000001167 528. 348. -0.600
9 ENSG00000001460 227. 186. -0.290
10 ENSG00000001461 3170. 2701. -0.231
i 21,807 more rows

A common threshold used for calling something differentially expressed is a 𝑙𝑜𝑔2(𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒)
of greater than 2 or less than -2. Let’s filter the dataset both ways to see how many genes are
up or down-regulated.

meancounts |> filter(log2fc>2)

A tibble: 250 x 4
ensgene controlmean treatedmean log2fc
<chr> <dbl> <dbl> <dbl>

1 ENSG00000004799 270. 1429. 2.40
2 ENSG00000006788 2.75 19.8 2.84

339

3 ENSG00000008438 0.5 2.75 2.46
4 ENSG00000011677 0.5 2.25 2.17
5 ENSG00000015413 0.5 3 2.58
6 ENSG00000015592 0.5 2.25 2.17
7 ENSG00000046653 323 2126. 2.72
8 ENSG00000070190 0.5 3 2.58
9 ENSG00000070388 3.5 17.5 2.32
10 ENSG00000074317 0.25 1.75 2.81
i 240 more rows

meancounts |> filter(log2fc<(-2))

A tibble: 367 x 4
ensgene controlmean treatedmean log2fc
<chr> <dbl> <dbl> <dbl>

1 ENSG00000015520 32 6 -2.42
2 ENSG00000019186 26.5 1.75 -3.92
3 ENSG00000025423 295 54.2 -2.44
4 ENSG00000028277 88.2 22 -2.00
5 ENSG00000029559 1.25 0.25 -2.32
6 ENSG00000049246 405 93 -2.12
7 ENSG00000049247 1.25 0.25 -2.32
8 ENSG00000052344 2.25 0.25 -3.17
9 ENSG00000054179 3 0.25 -3.58
10 ENSG00000064201 30 6.5 -2.21
i 357 more rows

Exercise 6

Look up help on ?inner_join or Google around for help for using dplyr’s inner_join()
to join two tables by a common column/key. You downloaded annotables_grch38.csv
from the data downloads page. Load this data with read_csv() into an object called
anno. Pipe it to View() or click on the object in the Environment pane to view the
entire dataset. This table links the unambiguous Ensembl gene ID to things like the gene
symbol, full gene name, location, Entrez gene ID, etc.

anno <- read_csv("data/annotables_grch38.csv")
anno

A tibble: 66,531 x 9
ensgene entrez symbol chr start end strand biotype description
<chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr>

340

data/annotables_grch38.csv
data.html

1 ENSG00000000003 7105 TSPAN6 X 1.01e8 1.01e8 -1 protei~ tetraspani~
2 ENSG00000000005 64102 TNMD X 1.01e8 1.01e8 1 protei~ tenomoduli~
3 ENSG00000000419 8813 DPM1 20 5.09e7 5.10e7 -1 protei~ dolichyl-p~
4 ENSG00000000457 57147 SCYL3 1 1.70e8 1.70e8 -1 protei~ SCY1-like,~
5 ENSG00000000460 55732 C1orf1~ 1 1.70e8 1.70e8 1 protei~ chromosome~
6 ENSG00000000938 2268 FGR 1 2.76e7 2.76e7 -1 protei~ FGR proto-~
7 ENSG00000000971 3075 CFH 1 1.97e8 1.97e8 1 protei~ complement~
8 ENSG00000001036 2519 FUCA2 6 1.43e8 1.44e8 -1 protei~ fucosidase~
9 ENSG00000001084 2729 GCLC 6 5.35e7 5.36e7 -1 protei~ glutamate-~
10 ENSG00000001167 4800 NFYA 6 4.11e7 4.11e7 1 protei~ nuclear tr~
i 66,521 more rows

Exercise 7

Take our newly created meancounts object, and arrange() it descending by the absolute
value (abs()) of the log2fc column. The first few rows should look like this:

A tibble: 3 x 4
ensgene controlmean treatedmean log2fc
<chr> <dbl> <dbl> <dbl>

1 ENSG00000179593 0.25 130. 9.02
2 ENSG00000277196 0.5 63.8 6.99
3 ENSG00000109906 14.8 809. 5.78

Exercise 8

Continue on that pipeline, and inner_join() it to the anno data by the ensgene column.
Either assign it to a temporary object or pipe the whole thing to View to take a look.
What do you notice? Would you trust these results? Why or why not?

A tibble: 21,995 x 12
ensgene controlmean treatedmean log2fc entrez symbol chr start end
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <dbl> <dbl>

1 ENSG0000017~ 0.25 130. 9.02 2.47e2 ALOX1~ 17 8.04e6 8.05e6
2 ENSG0000027~ 0.5 63.8 6.99 1.03e8 AC007~ KI27~ 1.38e5 1.62e5
3 ENSG0000010~ 14.8 809. 5.78 7.70e3 ZBTB16 11 1.14e8 1.14e8
4 ENSG0000012~ 12.8 0.25 -5.67 2.85e3 MCHR1 22 4.07e7 4.07e7
5 ENSG0000017~ 9 427. 5.57 1.02e4 ANGPT~ 1 1.12e7 1.12e7
6 ENSG0000013~ 0.25 10.2 5.36 4.32e3 MMP7 11 1.03e8 1.03e8
7 ENSG0000024~ 0.25 7.25 4.86 5.85e4 LY6G5B CHR_~ 3.17e7 3.17e7
8 ENSG0000027~ 0.5 13.2 4.73 4.40e5 GPR179 17 3.83e7 3.83e7
9 ENSG0000011~ 25.5 1 -4.67 8.45e2 CASQ2 1 1.16e8 1.16e8

341

10 ENSG0000012~ 34.2 827. 4.59 7.97e4 STEAP4 7 8.83e7 8.83e7
i 21,985 more rows
i 3 more variables: strand <dbl>, biotype <chr>, description <chr>

12.4 DESeq2 analysis

12.4.1 DESeq2 package

Let’s do this the right way. DESeq2 is an R package for analyzing count-based NGS data like
RNA-seq. It is available from Bioconductor. Bioconductor is a project to provide tools for
analysing high-throughput genomic data including RNA-seq, ChIP-seq and arrays. You can
explore Bioconductor packages here.

Bioconductor packages usually have great documentation in the form of vignettes. For a
great example, take a look at the DESeq2 vignette for analyzing count data. This 40+ page
manual is packed full of examples on using DESeq2, importing data, fitting models, creating
visualizations, references, etc.

Just like R packages from CRAN, you only need to install Bioconductor packages once (in-
structions here), then load them every time you start a new R session.

library(DESeq2)
citation("DESeq2")

Take a second and read through all the stuff that flies by the screen when you load the DESeq2
package. When you first installed DESeq2 it may have taken a while, because DESeq2 depends
on a number of other R packages (S4Vectors, BiocGenerics, parallel, IRanges, etc.) Each
of these, in turn, may depend on other packages. These are all loaded into your working
environment when you load DESeq2. Also notice the lines that start with The following
objects are masked from 'package:.... One example of this is the rename() function
from the dplyr package. When the S4Vectors package was loaded, it loaded it’s own function
called rename(). Now, if you wanted to use dplyr’s rename function, you’ll have to call it
explicitly using this kind of syntax: dplyr::rename(). See this Q&A thread for more.

12.4.2 Importing data

DESeq works on a particular type of object called a DESeqDataSet. The DESeqDataSet is a
single object that contains input values, intermediate calculations like how things are normal-
ized, and all results of a differential expression analysis. You can construct a DESeqDataSet
from a count matrix, a metadata file, and a formula indicating the design of the experiment.

342

http://www.bioconductor.org/
http://www.bioconductor.org/packages/release/BiocViews.html#___Software
http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
http://stackoverflow.com/questions/4879377/r-masked-functions

See the help for ?DESeqDataSetFromMatrix. If you read through the DESeq2 vignette you’ll
read about the structure of the data that you need to construct a DESeqDataSet object.

DESeqDataSetFromMatrix requires the count matrix (countData argument) to be a matrix or
numeric data frame. either the row names or the first column of the countData must be the
identifier you’ll use for each gene. The column names of countData are the sample IDs, and
they must match the row names of colData (or the first column when tidy=TRUE). colData
is an additional dataframe describing sample metadata. Both colData and countData must
be regular data.frame objects – they can’t have the special tbl class wrapper created when
importing with readr::read_*.

Let’s look at our mycounts and metadata again.

mycounts

A tibble: 38,694 x 9
ensgene SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

343

http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf

1 ENSG000000~ 723 486 904 445 1170 1097
2 ENSG000000~ 0 0 0 0 0 0
3 ENSG000000~ 467 523 616 371 582 781
4 ENSG000000~ 347 258 364 237 318 447
5 ENSG000000~ 96 81 73 66 118 94
6 ENSG000000~ 0 0 1 0 2 0
7 ENSG000000~ 3413 3916 6000 4308 6424 10723
8 ENSG000000~ 2328 1714 2640 1381 2165 2262
9 ENSG000000~ 670 372 692 448 917 807

10 ENSG000000~ 426 295 531 178 740 651
i 38,684 more rows
i 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>

metadata

A tibble: 8 x 4
id dex celltype geo_id
<chr> <chr> <chr> <chr>

1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
7 SRR1039520 control N061011 GSM1275874
8 SRR1039521 treated N061011 GSM1275875

class(mycounts)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

class(metadata)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

Remember, we read in our count data and our metadata using read_csv() which read them
in as those “special” dplyr data frames / tbls. We’ll need to convert them back to regular data
frames for them to work well with DESeq2.

344

mycounts <- as.data.frame(mycounts)
metadata <- as.data.frame(metadata)
head(mycounts)
head(metadata)
class(mycounts)
class(metadata)

Let’s check that the column names of our count data (except the first, which is ensgene) are
the same as the IDs from our colData.

names(mycounts)[-1]

[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
[6] "SRR1039517" "SRR1039520" "SRR1039521"

metadata$id

[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
[6] "SRR1039517" "SRR1039520" "SRR1039521"

names(mycounts)[-1]==metadata$id

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

all(names(mycounts)[-1]==metadata$id)

[1] TRUE

Now we can move on to constructing the actual DESeqDataSet object. The last thing we’ll
need to specify is a design – a formula which expresses how the counts for each gene depend
on the variables in colData. Take a look at metadata again. The thing we’re interested in is
the dex column, which tells us which samples are treated with dexamethasone versus which
samples are untreated controls. We’ll specify the design with a tilde, like this: design=~dex.
(The tilde is the shifted key to the left of the number 1 key on my keyboard. It looks like a
little squiggly line). So let’s contruct the object and call it dds, short for our DESeqDataSet.
If you get a warning about “some variables in design formula are characters, converting to
factors” don’t worry about it. Take a look at the dds object once you create it.

345

dds <- DESeqDataSetFromMatrix(countData=mycounts,
colData=metadata,
design=~dex,
tidy=TRUE)

dds

class: DESeqDataSet
dim: 38694 8
metadata(1): version
assays(1): counts
rownames(38694): ENSG00000000003 ENSG00000000005 ... ENSG00000283120
ENSG00000283123

rowData names(0):
colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
colData names(4): id dex celltype geo_id

12.4.3 DESeq pipeline

Next, let’s run the DESeq pipeline on the dataset, and reassign the resulting object back to
the same variable. Before we start, dds is a bare-bones DESeqDataSet. The DESeq() function
takes a DESeqDataSet and returns a DESeqDataSet, but with lots of other information filled
in (normalization, dispersion estimates, differential expression results, etc). Notice how if we
try to access these objects before running the analysis, nothing exists.

sizeFactors(dds)

NULL

dispersions(dds)

NULL

results(dds)

Error in results(dds): couldn't find results. you should first run DESeq()

346

Here, we’re running the DESeq pipeline on the dds object, and reassigning the whole thing
back to dds, which will now be a DESeqDataSet populated with all those values. Get some help
on ?DESeq (notice, no “2” on the end). This function calls a number of other functions within
the package to essentially run the entire pipeline (normalizing by library size by estimating
the “size factors,” estimating dispersion for the negative binomial model, and fitting models
and getting statistics for each gene for the design specified when you imported the data).

dds <- DESeq(dds)

12.4.4 Getting results

Since we’ve got a fairly simple design (single factor, two groups, treated versus control), we can
get results out of the object simply by calling the results() function on the DESeqDataSet
that has been run through the pipeline. The help page for ?results and the vignette both
have extensive documentation about how to pull out the results for more complicated models
(multi-factor experiments, specific contrasts, interaction terms, time courses, etc.).

Note two things:

1. We’re passing the tidy=TRUE argument, which tells DESeq2 to output the results table
with rownames as a first column called ‘row.’ If we didn’t do this, the gene names would
be stuck in the row.names, and we’d have a hard time filtering or otherwise using that
column.

2. This returns a regular old data frame. Try displaying it to the screen by just typing res.
You’ll see that it doesn’t print as nicly as the data we read in with read_csv. We can
add this “special” attribute to the raw data returned which just tells R to print it nicely.

res <- results(dds, tidy=TRUE)
res <- as_tibble(res)
res

A tibble: 38,694 x 7
row baseMean log2FoldChange lfcSE stat pvalue padj
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ENSG00000000003 747. -0.351 0.168 -2.08 0.0371 0.163
2 ENSG00000000005 0 NA NA NA NA NA
3 ENSG00000000419 520. 0.206 0.101 2.04 0.0414 0.176
4 ENSG00000000457 323. 0.0245 0.145 0.169 0.866 0.962
5 ENSG00000000460 87.7 -0.147 0.257 -0.573 0.567 0.816
6 ENSG00000000938 0.319 -1.73 3.49 -0.496 0.620 NA
7 ENSG00000000971 5760. 0.459 0.234 1.96 0.0500 0.201
8 ENSG00000001036 2025. -0.228 0.125 -1.83 0.0679 0.247

347

9 ENSG00000001084 652. -0.253 0.203 -1.25 0.212 0.495
10 ENSG00000001167 412. -0.534 0.229 -2.33 0.0197 0.105
i 38,684 more rows

Either click on the res object in the environment pane or pass it to View() to bring it up
in a data viewer. Why do you think so many of the adjusted p-values are missing (NA)? Try
looking at the baseMean column, which tells you the average overall expression of this gene,
and how that relates to whether or not the p-value was missing. Go to the DESeq2 vignette
and read the section about “Independent filtering and multiple testing.”

The goal of independent filtering is to filter out those tests from the procedure that
have no, or little chance of showing significant evidence, without even looking at
the statistical result. Genes with very low counts are not likely to see significant
differences typically due to high dispersion. This results in increased detection
power at the same experiment-wide type I error [i.e., better FDRs].

Exercise 9

Using a |>, arrange the results by the adjusted p-value.

A tibble: 38,694 x 7
row baseMean log2FoldChange lfcSE stat pvalue padj
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 ENSG00000152583 955. 4.37 0.237 18.4 8.74e-76 1.32e-71
2 ENSG00000179094 743. 2.86 0.176 16.3 8.11e-60 6.14e-56
3 ENSG00000116584 2278. -1.03 0.0651 -15.9 6.93e-57 3.50e-53
4 ENSG00000189221 2384. 3.34 0.212 15.7 9.14e-56 3.46e-52
5 ENSG00000120129 3441. 2.97 0.204 14.6 5.26e-48 1.59e-44
6 ENSG00000148175 13494. 1.43 0.100 14.2 7.25e-46 1.83e-42
7 ENSG00000178695 2685. -2.49 0.178 -14.0 2.11e-44 4.57e-41
8 ENSG00000109906 440. 5.93 0.428 13.8 1.36e-43 2.58e-40
9 ENSG00000134686 2934. 1.44 0.106 13.6 4.05e-42 6.82e-39
10 ENSG00000101347 14135. 3.85 0.285 13.5 1.25e-41 1.90e-38
i 38,684 more rows

Exercise 10

Continue piping to inner_join(), joining the results to the anno object. See the help
for ?inner_join, specifically the by= argument. You’ll have to do something like ...
|> inner_join(anno, by=c("row"="ensgene")). Once you’re happy with this result,
reassign the result back to res. It’ll look like this.

row baseMean log2FoldChange lfcSE stat pvalue
1 ENSG00000152583 954.7709 4.368359 0.23712679 18.42204 8.744898e-76

348

http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf

2 ENSG00000179094 743.2527 2.863889 0.17556931 16.31201 8.107836e-60
3 ENSG00000116584 2277.9135 -1.034701 0.06509844 -15.89440 6.928546e-57
4 ENSG00000189221 2383.7537 3.341544 0.21240579 15.73189 9.144326e-56
5 ENSG00000120129 3440.7038 2.965211 0.20369513 14.55710 5.264243e-48
6 ENSG00000148175 13493.9204 1.427168 0.10038904 14.21638 7.251278e-46

padj entrez symbol chr start end strand biotype
1 1.324415e-71 8404 SPARCL1 4 87473335 87531061 -1 protein_coding
2 6.139658e-56 5187 PER1 17 8140472 8156506 -1 protein_coding
3 3.497761e-53 9181 ARHGEF2 1 155946851 156007070 -1 protein_coding
4 3.462270e-52 4128 MAOA X 43654907 43746824 1 protein_coding
5 1.594539e-44 1843 DUSP1 5 172768090 172771195 -1 protein_coding
6 1.830344e-42 2040 STOM 9 121338988 121370304 -1 protein_coding

description
1 SPARC-like 1 (hevin) [Source:HGNC Symbol;Acc:HGNC:11220]
2 period circadian clock 1 [Source:HGNC Symbol;Acc:HGNC:8845]
3 Rho/Rac guanine nucleotide exchange factor (GEF) 2 [Source:HGNC Symbol;Acc:HGNC:682]
4 monoamine oxidase A [Source:HGNC Symbol;Acc:HGNC:6833]
5 dual specificity phosphatase 1 [Source:HGNC Symbol;Acc:HGNC:3064]
6 stomatin [Source:HGNC Symbol;Acc:HGNC:3383]

Exercise 11

How many are significant with an adjusted p-value <0.05? (Pipe to filter()).

[1] 2186

Exercise 12

Finally, let’s write out the significant results. See the help for ?write_csv, which is part
of the readr package (note: this is not the same as write.csv with a dot.). We can
continue that pipe and write out the significant results to a file like so:

res |>
filter(padj<0.05) |>
write_csv("sigresults.csv")

You can open this file in Excel or any text editor (try it now).

349

12.5 Data Visualization

12.5.1 Plotting counts

DESeq2 offers a function called plotCounts() that takes a DESeqDataSet that has been run
through the pipeline, the name of a gene, and the name of the variable in the colData that
you’re interested in, and plots those values. See the help for ?plotCounts. Let’s first see
what the gene ID is for the CRISPLD2 gene using res |> filter(symbol=="CRISPLD2").
Now, let’s plot the counts, where our intgroup, or “interesting group” variable is the “dex”
column.

plotCounts(dds, gene="ENSG00000103196", intgroup="dex")

10
00

50
00

ENSG00000103196

group

no
rm

al
iz

ed
 c

ou
nt

control treated

That’s just okay. Keep looking at the help for ?plotCounts. Notice that we could have
actually returned the data instead of plotting. We could then pipe this to ggplot and make
our own figure. Let’s make a boxplot.

Return the data
plotCounts(dds, gene="ENSG00000103196", intgroup="dex", returnData=TRUE)

count dex
SRR1039508 774.5002 control
SRR1039509 6258.7915 treated
SRR1039512 1100.2741 control

350

SRR1039513 6093.0324 treated
SRR1039516 736.9483 control
SRR1039517 2742.1908 treated
SRR1039520 842.5452 control
SRR1039521 6224.9923 treated

Plot it
plotCounts(dds, gene="ENSG00000103196", intgroup="dex", returnData=TRUE) |>
ggplot(aes(dex, count)) + geom_boxplot(aes(fill=dex)) + scale_y_log10() + ggtitle("CRISPLD2")

1000

3000

5000

control treated
dex

co
un

t dex

control

treated

CRISPLD2

12.5.2 MA & Volcano plots

Let’s make some commonly produced visualizations from this data. First, let’s mutate our
results object to add a column called sig that evaluates to TRUE if padj<0.05, and FALSE if
not, and NA if padj is also NA.

Create the new column
res <- res |> mutate(sig=padj<0.05)

How many of each?
res |>
group_by(sig) |>

351

summarize(n=n())

A tibble: 3 x 2
sig n
<lgl> <int>

1 FALSE 13106
2 TRUE 2186
3 NA 23665

Exercise 13

Look up the Wikipedia articles on MA plots and volcano plots. An MA plot shows the
average expression on the X-axis and the log fold change on the y-axis. A volcano plot
shows the log fold change on the X-axis, and the −𝑙𝑜𝑔10 of the p-value on the Y-axis (the
more significant the p-value, the larger the −𝑙𝑜𝑔10 of that value will be).
Make an MA plot. Use a 𝑙𝑜𝑔10-scaled x-axis, color-code by whether the gene is significant,
and give your plot a title. It should look like this. What’s the deal with the gray points?
Why are they missing? Go to the DESeq2 website on Bioconductor and look through
the vignette for “Independent Filtering.”

−5

0

5

1 100 10000
baseMean

lo
g2

F
ol

dC
ha

ng
e

sig

FALSE

TRUE

NA

MA plot

352

https://en.wikipedia.org/wiki/MA_plot
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)

Exercise 14

Make a volcano plot. Similarly, color-code by whether it’s significant or not.

0

20

40

60

−5 0 5
log2FoldChange

−
1

*
lo

g1
0(

pv
al

ue
)

sig

FALSE

TRUE

NA

Volcano plot

12.5.3 Transformation

To test for differential expression we operate on raw counts. But for other downstream analyses
like heatmaps, PCA, or clustering, we need to work with transformed versions of the data,
because it’s not clear how to best compute a distance metric on untransformed counts. The
go-to choice might be a log transformation. But because many samples have a zero count
(and 𝑙𝑜𝑔(0) = −∞, you might try using pseudocounts, i. e. 𝑦 = 𝑙𝑜𝑔(𝑛 + 1) or more generally,
𝑦 = 𝑙𝑜𝑔(𝑛 + 𝑛0), where 𝑛 represents the count values and 𝑛0 is some positive constant.

But there are other approaches that offer better theoretical justification and a rational way of
choosing the parameter equivalent to 𝑛0, and they produce transformed data on the log scale
that’s normalized to library size. One is called a variance stabilizing transformation (VST),
and it also removes the dependence of the variance on the mean, particularly the high variance
of the log counts when the mean is low.

vsdata <- vst(dds, blind=FALSE)

353

12.5.4 PCA

Let’s do some exploratory plotting of the data using principal components analysis on the
variance stabilized data from above. Let’s use the DESeq2-provided plotPCA function. See
the help for ?plotPCA and notice that it also has a returnData option, just like plotCounts.

plotPCA(vsdata, intgroup="dex")

−10

0

10

20

−10 0 10 20
PC1: 32% variance

P
C

2:
 2

4%
 v

ar
ia

nc
e

group
control
treated

Principal Components Analysis (PCA) is a dimension reduction and visualization technique
that is here used to project the multivariate data vector of each sample into a two-dimensional
plot, such that the spatial arrangement of the points in the plot reflects the overall data
(dis)similarity between the samples. In essence, principal component analysis distills all the
global variation between samples down to a few variables called principal components. The
majority of variation between the samples can be summarized by the first principal component,
which is shown on the x-axis. The second principal component summarizes the residual vari-
ation that isn’t explained by PC1. PC2 is shown on the y-axis. The percentage of the global
variation explained by each principal component is given in the axis labels. In a two-condition
scenario (e.g., mutant vs WT, or treated vs control), you might expect PC1 to separate the
two experimental conditions, so for example, having all the controls on the left and all experi-
mental samples on the right (or vice versa - the units and directionality isn’t important). The
secondary axis may separate other aspects of the design - cell line, time point, etc. Very often
the experimental design is reflected in the PCA plot, and in this case, it is. But this kind of
diagnostic can be useful for finding outliers, investigating batch effects, finding sample swaps,

354

and other technical problems with the data. This YouTube video from the Genetics Depart-
ment at UNC gives a very accessible explanation of what PCA is all about in the context of
a gene expression experiment, without the need for an advanced math background. Take a
look.

12.5.5 Bonus: Heatmaps

Heatmaps are complicated, and are often poorly understood. It’s a type of visualization used
very often in high-throughput biology where data are clustered on rows and columns, and the
actual data is displayed as tiles on a grid, where the values are mapped to some color spectrum.
Our R useRs group MeetUp had a session on making heatmaps, which I summarized in this
blog post. Take a look at the code from that meetup, and the documentation for the aheatmap
function in the NMF package to see if you can re-create this image. Here, I’m clustering all
samples using the top 25 most differentially regulated genes, labeling the rows with the gene
symbol, and putting two annotation color bars across the top of the main heatmap panel
showing treatment and cell line annotations from our metadata.

355

https://youtu.be/_UVHneBUBW0
http://www.opiniomics.org/you-probably-dont-understand-heatmaps/
http://www.gettinggeneticsdone.com/2015/04/r-user-group-recap-heatmaps-and-using.html
http://www.gettinggeneticsdone.com/2015/04/r-user-group-recap-heatmaps-and-using.html
https://github.com/UVa-R-Users-Group/meetup/blob/master/2015-02-19-heat-maps/heatmaps.R
http://nmf.r-forge.r-project.org/aheatmap.html
http://nmf.r-forge.r-project.org/aheatmap.html

S
R

R
1039520

S
R

R
1039512

S
R

R
1039508

S
R

R
1039516

S
R

R
1039517

S
R

R
1039509

S
R

R
1039513

S
R

R
1039521

KCTD12

ARHGEF2

SLC6A9

DNM1

FAM171B

MT2A

MORF4L2

FKBP5

PHC2

MAOA

NNMT

PER1

SPARCL1

FAM198B

SMIM3

PNPLA2

STOM

GLUL

STEAP1

DUSP1

NEXN

CCDC69

SAMHD1

MT1X

ZBTB16
dex

control
treated

celltype
N052611
N061011
N080611
N61311

−1

−0.5

0

0.5

1

356

12.6 Record sessionInfo()

The sessionInfo() prints version information about R and any attached packages. It’s a
good practice to always run this command at the end of your R session and record it for the
sake of reproducibility in the future.

sessionInfo()

R version 4.4.1 (2024-06-14)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.3

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] DESeq2_1.44.0 SummarizedExperiment_1.34.0
[3] Biobase_2.64.0 MatrixGenerics_1.16.0
[5] matrixStats_1.3.0 GenomicRanges_1.56.1
[7] GenomeInfoDb_1.40.1 IRanges_2.38.1
[9] S4Vectors_0.42.1 BiocGenerics_0.50.0
[11] dplyr_1.1.4 readr_2.1.5
[13] ggplot2_3.5.1

loaded via a namespace (and not attached):
[1] gtable_0.3.5 xfun_0.46 lattice_0.22-6
[4] tzdb_0.4.0 vctrs_0.6.5 tools_4.4.1
[7] generics_0.1.3 parallel_4.4.1 tibble_3.2.1
[10] fansi_1.0.6 cluster_2.1.6 pkgconfig_2.0.3
[13] Matrix_1.7-0 RColorBrewer_1.1-3 rngtools_1.5.2
[16] lifecycle_1.0.4 GenomeInfoDbData_1.2.12 stringr_1.5.1

357

[19] compiler_4.4.1 farver_2.1.2 munsell_0.5.1
[22] tinytex_0.52 codetools_0.2-20 htmltools_0.5.8.1
[25] yaml_2.3.10 pillar_1.9.0 crayon_1.5.3
[28] BiocParallel_1.38.0 DelayedArray_0.30.1 iterators_1.0.14
[31] foreach_1.5.2 abind_1.4-5 tidyselect_1.2.1
[34] locfit_1.5-9.10 digest_0.6.36 stringi_1.8.4
[37] reshape2_1.4.4 labeling_0.4.3 fastmap_1.2.0
[40] grid_4.4.1 colorspace_2.1-1 cli_3.6.3
[43] SparseArray_1.4.8 magrittr_2.0.3 S4Arrays_1.4.1
[46] utf8_1.2.4 withr_3.0.1 scales_1.3.0
[49] UCSC.utils_1.0.0 bit64_4.0.5 registry_0.5-1
[52] rmarkdown_2.28 XVector_0.44.0 httr_1.4.7
[55] bit_4.0.5 hms_1.1.3 evaluate_0.24.0
[58] knitr_1.48 doParallel_1.0.17 NMF_0.28
[61] rlang_1.1.4 Rcpp_1.0.13 gridBase_0.4-7
[64] glue_1.7.0 BiocManager_1.30.25 rstudioapi_0.16.0
[67] vroom_1.6.5 jsonlite_1.8.8 plyr_1.8.9
[70] R6_2.5.1 zlibbioc_1.50.0

12.7 Pathway Analysis

Pathway analysis or gene set analysis means many different things, general approaches are
nicely reviewed in: Khatri, et al. “Ten years of pathway analysis: current approaches and
outstanding challenges.” PLoS Comput Biol 8.2 (2012): e1002375.

There are many freely available tools for pathway or over-representation analysis. Bioconduc-
tor alone has over 70 packages categorized under gene set enrichment and over 100 packages
categorized under pathways. I wrote this tutorial in 2015 showing how to use the GAGE (Gen-
erally Applicable Gene set Enrichment)2 package to do KEGG pathway enrichment analysis
on differential expression results.

While there are many freely available tools to do this, and some are truly fantastic, many of
them are poorly maintained or rarely updated. The DAVID tool that a lot of folks use wasn’t
updated at all between Jan 2010 and Oct 2016.

UVA has a site license to Ingenuity Pathway Analysis. Statistically, IPA isn’t doing anything
revolutionary methodologically, but the real value comes in with its (1) ease of use, and (2)
highly curated knowledgebase. You can get access to IPA through the Health Sciences Library
at this link, and there are also links to UVA support resources for using IPA.

2Luo, W. et al., 2009. GAGE: generally applicable gene set enrichment for pathway analysis. BMC bioinfor-
matics, 10:161. Package: bioconductor.org/packages/gage.

358

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002375
http://bioconductor.org/packages/release/BiocViews.html#___GeneSetEnrichment
http://bioconductor.org/packages/release/BiocViews.html#___Pathways
http://bioconductor.org/packages/release/BiocViews.html#___Pathways
http://www.gettinggeneticsdone.com/2015/12/tutorial-rna-seq-differential.html
https://david.ncifcrf.gov/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://www.bioconnector.virginia.edu/content/ingenuity-pathway-analysis-0
https://www.ncbi.nlm.nih.gov/pubmed/19473525
https://www.ncbi.nlm.nih.gov/pubmed/19473525
http://bioconductor.org/packages/gage

This summary report is the first thing you would get out of IPA after running a core
analysis on the results of this analysis. Open it up and take a look.

It shows, among other things, that the endothelial nitric-oxide synthase signaling pathway
is highly over-represented among the most differentially expressed genes. For this, or any
pathway you’re interested in, IPA will give you a report like this one for eNOS with a very
detailed description of the pathway, what kind of diseases it’s involved in, which molecules
are in the pathway, what drugs might perturb the pathway, and more. If you’re logged into
IPA, clicking any of the links will take you to IPA’s knowledge base where you can learn more
about the connection between that molecule, the pathway, and a disease, and further overlay
any of your gene expression data on top of the pathway.

The report also shows us some upstream regulators, which serves as a great positive control
that this stuff actually works, because it’s inferring that dexamethasone might be an upstream
regulator based on the target molecules that are dysregulated in our data.

You can also start to visualize networks in the context of biology and how your gene expression
data looks in those molecules. Here’s a network related to “Connective Tissue Disorders,
Inflammatory Disease, Inflammatory Response” showing dysregulation of some of the genes in
our data.

359

img/r-rnaseq-airway-ipa-upstream.csv

360

13 Visualizing and Annotating Phylogenetic
Trees

This chapter demonstrates how to use ggtree, an extension of the ggplot2 package to visualize
and annotate phylogenetic trees. Many of the examples here were modified from the ggtree
vignettes.

This chapter does not cover methods and software for generating phylogenetic trees, nor does
it it cover interpreting phylogenies. Here’s a quick primer on how to read a phylogeny
that you should definitely review prior to this chapter, but it is by no means extensive. Genome-
wide sequencing allows for examination of the entire genome, and from this, many methods
and software tools exist for comparative genomics using SNP- and gene-based phylogenetic
analysis, either from unassembled sequencing reads, draft assemblies/contigs, or complete
genome sequences. These methods are beyond the scope of this chapter.

13.1 The ggtree Package

ggtree is an R package that extends ggplot2 for visualizating and annotating phylogenetic
trees with their covariates and other associated data. It is available from Bioconductor. Bio-
conductor is a project to provide tools for analyzing and annotating various kinds of genomic
data. You can search and browse Bioconductor packages here.

1. ggtree Bioconductor page: bioconductor.org/packages/ggtree.
2. ggtree homepage: guangchuangyu.github.io/ggtree (contains more information about

the package, more documentation, a gallery of beautiful images, and links to related
resources).

3. ggtree publication: Yu, Guangchuang, et al. “ggtree: an r package for visualization
and annotation of phylogenetic trees with their covariates and other associated data.”
Methods in Ecology and Evolution (2016) DOI:10.1111/2041-210X.12628.

Bioconductor packages usually have great documentation in the form of vignettes. Take a
look at the landing page for ggtree – about halfway down the page under the “Documenta-
tion” heading there are multiple walkthrough tutorials directed to different applications and
functionalities of ggtree, chock full of runnable examples and explanations.

361

http://bioconductor.org/packages/release/bioc/html/ggtree.html
http://bioconductor.org/packages/release/bioc/html/ggtree.html
http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny
http://www.bioconductor.org/
http://www.bioconductor.org/packages/release/BiocViews.html#___Software
http://bioconductor.org/packages/release/bioc/html/ggtree.html
https://guangchuangyu.github.io/ggtree/
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12628/full
http://bioconductor.org/packages/release/bioc/html/ggtree.html

library(ggtree)

A note on masked functions: If you already loaded a package like dplyr, take a second and
look through some of the output that you see when you load ggtree after dplyr. When
you first installed ggtree it may have taken a while, because ggtree depends on a number of
other R packages. Each of these, in turn, may depend on other packages. These are all
loaded into your working environment when you load ggtree. Also notice the lines that start
with The following objects are masked from 'package:.... One example of this is the
collapse() function from dplyr. When ggtree was loaded, it loaded it’s own function called
collapse(). Now, if you wanted to use dplyr’s collapse function, you’ll have to call it explicitly
using this kind of syntax: dplyr::collapse(). See this Q&A thread for more.

13.2 Tree Import

From the ggtree landing page take a look at the Tree Data Import vignette. There are many
different software packages for creating phylogenetic trees from different types of data, and
there are many formats for storing the resulting phylogenetic trees they produce.

Most tree viewer software (including R packages) focus on Newick and Nexus file formats, and
other evolution analysis software might also contain supporting evidence within the file that
are ready for annotating a phylogenetic tree. ggtree supports several file formats, including:

• Newick
• Nexus
• Phylip
• Jplace
• New Hampshire eXtended format (NHX)

and software output from:

• BEAST
• EPA
• HYPHY
• PAML
• PHYLDOG
• pplacer
• r8s
• RAxML
• RevBayes

The ggtree package implement several parser functions, including:

• read.tree for reading Newick files.

362

http://stackoverflow.com/questions/4879377/r-masked-functions
http://bioconductor.org/packages/release/bioc/html/ggtree.html
http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/treeImport.html
https://en.wikipedia.org/wiki/Newick_format
https://en.wikipedia.org/wiki/Nexus_file
https://en.wikipedia.org/wiki/PHYLIP
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031009
https://home.cc.umanitoba.ca/~psgendb/doc/atv/NHX.pdf
http://beast2.org/
http://sco.h-its.org/exelixis/web/software/epa/index.html
http://hyphy.org/w/index.php/Main_Page
http://abacus.gene.ucl.ac.uk/software/paml.html
http://pbil.univ-lyon1.fr/software/phyldog/
http://matsen.fhcrc.org/pplacer/
http://loco.biosci.arizona.edu/r8s/
http://sco.h-its.org/exelixis/web/software/raxml/
http://revbayes.github.io/intro.html

• read.phylip for reading Phylip files.
• read.jplace for reading Jplace files.
• read.nhx for reading NHX files.
• read.beast for parsing output of BEAST
• read.codeml for parsing output of CODEML (rst and mlc files)
• read.codeml_mlc for parsing mlc file (output of CODEML)
• read.hyphy for parsing output of HYPHY
• read.jplace for parsing jplace file including output from EPA and pplacer
• read.nhx for parsing NHX file including output from PHYLODOG and RevBayes
• read.paml_rst for parsing rst file (output of BASEML and CODEML)
• read.r8s for parsing output of r8s
• read.raxml for parsing output of RAxML

13.3 Basic trees

Let’s first import our tree data. We’re going to work with a made-up phylogeny with 13
samples (“tips”). Download the tree_newick.nwk data by clicking here or using the link
above. Let’s load the libraries you’ll need if you haven’t already, and then import the tree
using read.tree(). Displaying the object itself really isn’t useful. The output just tells you
a little bit about the tree itself.

library(ggtree)

tree <- read.tree("data/tree_newick.nwk")
tree

Phylogenetic tree with 13 tips and 12 internal nodes.

Tip labels:
A, B, C, D, E, F, ...

Rooted; includes branch lengths.

Just like with ggplot2 we created a basic canvas with ggplot(...) and added layers with
+geom_???(), we can do the same here. The ggtree package gives us a geom_tree() function.
Because ggtree is built on top of ggplot2, you get ggplot2’s default gray theme with white lines.
You can override this with a theme from the ggtree package.

363

http://beast2.org/
http://abacus.gene.ucl.ac.uk/software/paml.html
http://hyphy.org/w/index.php/Main_Page
http://sco.h-its.org/exelixis/web/software/epa/index.html
http://matsen.fhcrc.org/pplacer/
http://pbil.univ-lyon1.fr/software/phyldog/
http://revbayes.github.io/intro.html
http://sco.h-its.org/exelixis/web/software/raxml/
data/tree_newick.nwk

Because you’ll almost always want to add a tree geom and remove the default background
and axes, the ggtree() function is essentially a shortcut for ggplot(...) + geom_tree() +
theme_tree().

build a ggplot with a geom_tree
ggplot(tree) + geom_tree() + theme_tree()

This is convenient shorthand
ggtree(tree)

There’s also the treescale geom, which adds a scale bar, or alternatively, you can change the
default ggtree() theme to theme_tree2(), which adds a scale on the x-axis. The horizontal
dimension in this plot shows the amount of genetic change, and the branches and represent
evolutionary lineages changing over time. The longer the branch in the horizonal dimension,
the larger the amount of change, and the scale tells you this. The units of branch length
are usually nucleotide substitutions per site – that is, the number of changes or substitutions
divided by the length of the sequence (alternatively, it could represent the percent change, i.e.,
the number of changes per 100 bases). See this article for more.

add a scale
ggtree(tree) + geom_treescale()

or add the entire scale to the x axis with theme_tree2()
ggtree(tree) + theme_tree2()

364

http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny

0 20 40

The default is to plot a phylogram, where the x-axis shows the genetic change / evolu-
tionary distance. If you want to disable scaling and produce a cladogram instead, set the
branch.length="none" option inside the ggtree() call. See ?ggtree for more.

ggtree(tree, branch.length="none")

365

The ... option in the help for ?ggtree represents additional options that are further passed
to ggplot(). You can use this to change aesthetics of the plot. Let’s draw a cladogram (no
branch scaling) using thick blue dotted lines (note that I’m not mapping these aesthetics to
features of the data with aes() – we’ll get to that later).

ggtree(tree, branch.length="none", color="blue", size=2, linetype=3)

Exercise 1

Look at the help again for ?ggtree, specifically at the layout= option. By default, it
produces a rectangular layout.

1. Create a slanted phylogenetic tree.
2. Create a circular phylogenetic tree.
3. Create a circular unscaled cladogram with thick red lines.

13.3.1 Other tree geoms

Let’s add additional layers. As we did in the visualization section (Chapter 5), we can create
a plot object, e.g., p, to store the basic layout of a ggplot, and add more layers to it as we
desire. Let’s add node and tip points. Let’s finally label the tips.

366

create the basic plot
p <- ggtree(tree)

add node points
p + geom_nodepoint()

add tip points
p + geom_tippoint()

Label the tips
p + geom_tiplab()

Exercise 2

Similar to how we change the aesthetics for the tree inside the ggtree() call, we can also
change the aesthetics of the points themselves by passing graphical parameters inside the
geom_nodepoint() or geom_tippoint() calls. Create a phylogeny with the following
aesthetic characteristics:

• tips labeled in purple
• purple-colored diamond-shape tip points (hint: Google search “R point characters”)
• large semitransparent yellow node points (hint: alpha=)
• Add a title with + ggtitle(...)

A
B

C
D

E

F
G

H

I
J

K
L

M

Exercise Figure: Not the prettiest phylogenetic aesthetics, but it'll do.

367

13.4 Tree annotation

The geom_tiplab() function adds some very rudimentary annotation. Let’s take annotation
a bit further. See the tree annotation and advanced tree annotation vignettes for more.

13.4.1 Internal node number

Before we can go further we need to understand how ggtree is handling the tree structure
internally. Some of the functions in ggtree for annotating clades need a parameter specifying
the internal node number. To get the internal node number, user can use geom_text to display
it, where the label is an aesthetic mapping to the “node variable” stored inside the tree object
(think of this like the continent variable inside the gapminder object). We also supply the
hjust option so that the labels aren’t sitting right on top of the nodes. Read more about this
process in the ggtree manipulation vignette.

ggtree(tree) + geom_text(aes(label=node), hjust=-.3)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21
22

23

24

25

Another way to get the internal node number is using MRCA() function by providing a vector of
taxa names (created using c("taxon1", "taxon2")).. The function will return node number
of input taxa’s most recent commond ancestor (MRCA). First, re-create the plot so you can
choose which taxa you want to grab the MRCA from.

368

http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/treeAnnotation.html
http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/advanceTreeAnnotation.html
http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/treeManipulation.html#internal-node-number

ggtree(tree) + geom_tiplab()

A

B

C

D

E

F

G

H

I

J

K

L

M

Let’s grab the most recent common ancestor for taxa C+E, and taxa G+H. We can use MRCA()
to get the internal node numbers. Go back to the node-labeled plot from before to confirm
this.

MRCA(tree, tip=c("C", "E"))
MRCA(tree, tip=c("G", "H"))

13.4.2 Labeling clades

We can use geom_cladelabel() to add another geom layer to annotate a selected clade with
a bar indicating the clade with a corresponding label. You select the clades using the internal
node number for the node that connects all the taxa in that clade. See the tree annotation
vignette for more.

Let’s annotate the clade with the most recent common ancestor between taxa C and E (internal
node 17). Let’s make the annotation red. See ?geom_cladelabel help for more.

ggtree(tree) +
geom_cladelabel(node=17, label="Some random clade", color="red")

369

http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/treeAnnotation.html#annotate-clades
http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/treeAnnotation.html#annotate-clades

Let’s add back in the tip labels. Notice how now the clade label is too close to the tip labels.
Let’s add an offset to adjust the position. You might have to fiddle with this number to get it
looking right.

ggtree(tree) +
geom_tiplab() +
geom_cladelabel(node=17, label="Some random clade",

color="red2", offset=.8)

Now let’s add another label for the clade connecting taxa G and H (internal node 21).

ggtree(tree) +
geom_tiplab() +
geom_cladelabel(node=17, label="Some random clade",

color="red2", offset=.8) +
geom_cladelabel(node=21, label="A different clade",

color="blue", offset=.8)

Uh oh. Now we have two problems. First, the labels would look better if they were
aligned. That’s simple. Pass align=TRUE to geom_cladelabel() (see ?geom_cladelabel
help for more). But now, the labels are falling off the edge of the plot. That’s because
geom_cladelabel() is just adding it this layer onto the end of the existing canvas that was
originally layed out in the ggtree call. This default layout tried to optimize by plotting the
entire tree over the entire region of the plot. Here’s how we’ll fix this.

1. First create the generic layout of the plot with ggtree(tree).
2. Add some tip labels.
3. Add each clade label.
4. Remember theme_tree2()? We used it way back to add a scale to the x-axis showing

the genetic distance. This is the unit of the x-axis. We need to set the limits on the x-
axis. Google around for something like “ggplot2 x axis limits” and you’ll wind up on this
StackOverflow page that tells you exactly how to solve it – just add on a + xlim(...,
...) layer. Here let’s extend out the axis a bit further to the right.

5. Finally, if we want, we can either comment out the theme_tree2() segment of the code,
or we could just add another theme layer on top of the plot altogether, which will override
the theme that was set before. theme_tree() doesn’t have the scale.

ggtree(tree) +
geom_tiplab() +
geom_cladelabel(node=17, label="Some random clade",

color="red2", offset=.8, align=TRUE) +
geom_cladelabel(node=21, label="A different clade",

370

https://stackoverflow.com/q/3606697/654296
https://stackoverflow.com/q/3606697/654296

color="blue", offset=.8, align=TRUE) +
theme_tree2() +
xlim(0, 70) +
theme_tree()

A

B

C

D

E

F

G

H

I

J

K

L

M

Some random clade

A different clade

Alternatively, we could highlight the entire clade with geom_hilight(). See the help for
options to tweak.

ggtree(tree) +
geom_tiplab() +
geom_hilight(node=17, fill="gold") +
geom_hilight(node=21, fill="purple")

371

A

B

C

D

E

F

G

H

I

J

K

L

M

13.4.3 Connecting taxa

Some evolutionary events (e.g. reassortment, horizontal gene transfer) can be visualized with
some simple annotations on a tree. The geom_taxalink() layer draws straight or curved lines
between any of two nodes in the tree, allow it to show evolutionary events by connecting taxa.
Take a look at the tree annotation vignette and ?geom_taxalink for more.

ggtree(tree) +
geom_tiplab() +
geom_taxalink("E", "H", color="blue3") +
geom_taxalink("C", "G", color="orange2", curvature=-.9)

372

http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/treeAnnotation.html#taxa-connection

A

B

C

D

E

F

G

H

I

J

K

L

M

Exercise 3

Produce the figure below.

1. First, find what the MRCA is for taxa B+C, and taxa L+J. You can do this in
one of two ways:

a. Easiest: use MRCA(tree, tip=c("taxon1", "taxon2")) for B/C and L/J
separately.

b. Alternatively: use ggtree(tree) + geom_text(aes(label=node),
hjust=-.3) to see what the node labels are on the plot. You might
also add tip labels here too.

2. Draw the tree with ggtree(tree).
3. Add tip labels.
4. Highlight these clades with separate colors.
5. Add a clade label to the larger superclade (node=17) that we saw before that

includes A, B, C, D, and E. You’ll probably need an offset to get this looking right.
6. Link taxa C to E, and G to J with a dashed gray line (hint: get the geom working

first, then try changing the aesthetics. You’ll need linetype=2 somewhere in the
geom_taxalink()).

7. Add a scale bar to the bottom by changing the theme.
8. Add a title.
9. Optionally, go back to the original ggtree(tree, ...) call and change the layout

to "circular".

373

A

B

C

D

E

F

G

H

I

J

K

L

M

Superclade 17

0 20 40

Exercise title: Not sure what we're trying to show here...

13.5 Advanced tree annotation

Let’s use a previously published dataset from this paper:

Liang et al. “Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin
internal genes in pigs in China.” Journal of virology (2014): 88(18):10864-74.

This data was reanalyzed in the ggtree paper.

The subset of the data used here contains 76 H3 hemagglutinin gene sequences of a lineage
containing both swine and human influenza A viruses. The sequence data set was re-analyzed
by using BEAST (available at http://beast.bio.ed.ac.uk/). BEAST (Bayesian Evolution-
ary Analysis Sampling Trees) can give you rooted, time-measured phylogenies inferred using
molecular clock models.

374

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178866/
http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12628/full
http://beast.bio.ed.ac.uk/

For this you’ll need the flu_tree_beast.tree output file from BEAST and the
flu_aasequence.fasta FASTA file with the multiple sequence alignment. These are
both available on the data downloads page. First let’s read in the tree with read.beast()
(instead of the read.tree() we used before). Let’s add a scale bar with theme_tree2(). This
gives you genetic distance. But, we have time measured here with molecular clock models.
We’ve only estimated the relative time between branching events, so if we want to actually
see dates on the x-axis, we need to supply the most recent sampling date to the ggtree()
call. Do this by setting mrsd="YYYY-MM-DD" inside ggtree().

Finally, let’s add some tip labels. We’ll want to right-align them, and by default the dotted
line is a little too thick. Let’s reduce the linesize a bit. Now, some of the labels might be
falling off the margin. Set the xlim to limit the axis to show between 1990 and 2020. You
could get MRCAs and node numbers and do all the annotations that we did before the same
way here.

Read the data
tree <- read.beast("data/flu_tree_beast.tree")

supply a most recent sampling date so you get the dates
and add a scale bar
ggtree(tree, mrsd="2013-01-01") +
theme_tree2()

Finally, add tip labels and adjust axis
ggtree(tree, mrsd="2013-01-01") +
theme_tree2() +
geom_tiplab(align=TRUE, linesize=.5) +
geom_tiplab(linesize=.5) +
xlim(1990, 2020)

Finally, let’s look at ?msaplot. This puts the multiple sequence alignment and the tree side-by-
side. The function takes a tree object (produced with ggtree()) and the path to the FASTA
multiple sequence alignment. You can do it with the entire MSA, or you could restrict to just
a window. Want something interesting-looking, but maybe not all that useful? Try changing
the coordinate system of the plot itself by passing + coord_polar(theta="y") to the end of
the command!

msaplot(p=ggtree(tree), fasta="data/flu_aasequence.fasta", window=c(150, 175))

Take a look at the advanced tree annotation vignette for much, much more!

375

data.html
http://bioconductor.org/packages/release/bioc/vignettes/ggtree/inst/doc/advanceTreeAnnotation.html

13.6 Bonus!

See the ggtree vignettes for more details on how these work.

13.6.1 Many trees

ggtree will let you plot many trees at once, and you can facet them the normal ggplot2 way.
Let’s generate 3 replicates each of 4 random trees with 10, 25, 50, and 100 tips, plotting them
all.

set.seed(42)
trees <- lapply(rep(c(10, 25, 50, 100), 3), rtree)
class(trees) <- "multiPhylo"
ggtree(trees) + ggplot2::facet_wrap(~.id, scale="free", ncol=4) + ggplot2::ggtitle("Many trees. Such phylogenetics. Wow.")

Tree #9 Tree #10 Tree #11 Tree #12

Tree #5 Tree #6 Tree #7 Tree #8

Tree #1 Tree #2 Tree #3 Tree #4

Many trees. Such phylogenetics. Wow.

376

http://bioconductor.org/packages/release/bioc/html/ggtree.html

13.6.2 Plot tree with other data

For showing a phylogenetic tree alongside other panels with your own data, the facet_plot()
function accepts a input data.frame and a geom function to draw the input data.

Generate a random tree with 30 tips
tree <- rtree(30)

Make the original plot
p <- ggtree(tree)

generate some random values for each tip label in the data
d1 <- data.frame(id=tree$tip.label, val=rnorm(30, sd=3))

Make a second plot with the original, naming the new plot "dot",
using the data you just created, with a point geom.
p2 <- facet_plot(p, panel="dot", data=d1, geom=geom_point, aes(x=val), color='red3')

Make some more data with another random value.
d2 <- data.frame(id=tree$tip.label, value = abs(rnorm(30, mean=100, sd=50)))

Now add to that second plot, this time using the new d2 data above,
This time showing a bar segment, size 3, colored blue.
p3 <- facet_plot(p2, panel='bar', data=d2, geom=geom_segment,

aes(x=0, xend=value, y=y, yend=y), size=3, color='blue4')

Show all three plots with a scale
p3 + theme_tree2()

13.6.3 Overlay organism silouhettes

phylopic.org hosts free silhouette images of animals, plants, and other life forms, all under
Creative Commons or Public Domain. You can use ggtree to overlay a phylopic image on your
plot at a node of your choosing. Let’s show some gram-negative bacteria over the whole plot,
and put a Homo sapiens and a dog on those clades we’re working with.

read.tree("data/tree_newick.nwk") %>%
ggtree() %>%
phylopic("ba0a446e-18d7-4db9-9937-5adec24721b5",

color="gold2", alpha = .25) %>%
phylopic("c089caae-43ef-4e4e-bf26-973dd4cb65c5",

377

http://phylopic.org/

color="purple3", alpha = .5, node=17) %>%
phylopic("6c9cb19d-1d8a-4215-88ba-d49cd4917a5e",

color="purple3", alpha = .5, node=21)

378

References
Bryan, Jennifer. 2019. “STAT 545: Data Wrangling, Exploration, and Analysis with r.”

https://stat545.com/.
Love, Michael I., Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold

Change and Dispersion for RNA-seq Data with DESeq2.” Genome Biology 15 (12): 1–21.
Robinson, David. 2015. “Variance Explained.” http://varianceexplained.org/.
Silge, Julia, and David Robinson. 2017. Text Mining with R: A Tidy Approach. 1st edition.

Beijing ; Boston: O’Reilly Media.
Teal, Tracy K., Karen A. Cranston, Hilmar Lapp, Ethan White, Greg Wilson, Karthik Ram,

and Aleksandra Pawlik. 2015. “Data Carpentry: Workshops to Increase Data Literacy for
Researchers.”

Wilson, Greg. 2014. “Software Carpentry: Lessons Learned.” F1000Research 3.
Yu, Guangchuang. 2022. “Ggtree: An r Package for Visualization of Tree and Annotation

Data.” http://bioconductor.org/packages/ggtree/.
Yu, Guangchuang, David K. Smith, Huachen Zhu, Yi Guan, and Tommy Tsan-Yuk Lam. 2017.

“Ggtree: An R Package for Visualization and Annotation of Phylogenetic Trees with Their
Covariates and Other Associated Data.” Methods in Ecology and Evolution 8 (1): 28–36.

379

https://stat545.com/
http://bioconductor.org/packages/ggtree/

A Setup

A.1 Software

1. R. If you don’t have R installed, download and install it from CRAN.
2. RStudio. Download and install it from RStudio’s website.
3. R packages. Install the following packages by running the following code in RStudio:

Needed for most chapters
install.packages("tidyverse")

Needed for certain chapter
install.packages(c("plotly",

"DT",
"knitr",
"rmarkdown",
"survminer",
"ModelMetrics",
"gower",
"randomForest",
"gbm",
"glmnet",
"mice",
"prophet",
"tidytext",
"gutenbergr",
"tm",
"topicmodels"))

For the predictive modeling chapter
install.packages("caret", dependencies = c("Depends", "Suggests"))

Bioconductor packages are installed differently
install.packages("BiocManager")
BiocManager::install(c("DESeq2",

"RTCGA",

380

https://cran.r-project.org/
https://posit.co/products/open-source/rstudio/

"RTCGA.clinical",
"RTCGA.mRNA",
"ggtree",

"Biostrings"))

A.2 Data

1. Option 1: Download all the data. Download and extract this zip file (11.36 Mb)
with all the data for the entire workshop. This may include additional datasets that we
won’t use here.

2. Option 2: Download individual datasets as needed.

• Create a new folder somewhere on your computer that’s easy to get to (e.g., your
Desktop). Name it bds. Inside that folder, make a folder called data, all lowercase.

• Download individual data files as needed, saving them to the new bdsr/data folder
you just made. Click to download. If data displays in your browser, right-click and
select Save link as… (or similar) to save to the desired location.

• data/airway_metadata.csv
• data/airway_scaledcounts.csv
• data/annotables_grch38.csv
• data/austen.csv
• data/brauer2007_messy.csv
• data/brauer2007_sysname2go.csv
• data/brauer2007_tidy.csv
• data/dmd.csv
• data/flu_genotype.csv
• data/gapminder.csv
• data/grads_dd.csv
• data/grads.csv
• data/h7n9_analysisready.csv
• data/h7n9.csv
• data/heartrate2dose.csv
• data/ilinet.csv
• data/movies_dd.csv
• data/movies_imdb.csv
• data/movies.csv
• data/nhanes_dd.csv
• data/nhanes.csv
• data/SRP026387_metadata.csv
• data/SRP026387_scaledcounts.csv

381

data/data.zip
data/airway_metadata.csv
data/airway_scaledcounts.csv
data/annotables_grch38.csv
data/austen.csv
data/brauer2007_messy.csv
data/brauer2007_sysname2go.csv
data/brauer2007_tidy.csv
data/dmd.csv
data/flu_genotype.csv
data/gapminder.csv
data/grads_dd.csv
data/grads.csv
data/h7n9_analysisready.csv
data/h7n9.csv
data/heartrate2dose.csv
data/ilinet.csv
data/movies_dd.csv
data/movies_imdb.csv
data/movies.csv
data/nhanes_dd.csv
data/nhanes.csv
data/SRP026387_metadata.csv
data/SRP026387_scaledcounts.csv

• data/stressEcho.csv

382

data/stressEcho.csv

B Further Resources

B.1 R resources

B.1.1 Getting Help

• Google it!: Try Googling generalized versions of any error messages you get. That is,
remove text that is specific to your problem (names of variables, paths, datasets, etc.).
You’d be surprised how many other people have probably had the same problem and
solved it.

• Stack Overflow: There are over 100,000 questions tagged with “R” on SO. Here are the
most popular ones, ranked by vote. Always search before asking, and make a reproducible
example if you want to get useful advice. This is a minimal example that allows others
who are trying to help you to see the error themselves.

• Bioconductor Support Site: Like SO, but specifically for Bioconductor-related questions.
• Read package vignettes. For example, see the dplyr CRAN page, scroll about halfway

down to see the introduction to dplyr vignette.

B.1.2 General R Resources

• TryR: An interactive, browser-based R tutor
• Swirl: An R package that teaches you R (and statistics!) from within R
• Jenny Bryan’s Stat 545 “Data wrangling, exploration, and analysis with R” course ma-

terial: An excellent resource for learning R, dplyr, and ggplot2
• DataCamp’s free introduction to R
• More DataCamp courses (UVA’s education benefits will cover these!).
• RStudio’s printable cheat sheets
• Rseek: A custom Google search for R-related sites
• Bioconductor vignettes, workflows, and course/conference materials

B.1.3 dplyr resources

• The dplyr vignette
• A longer dplyr tutorial with video and code
• The dplyr tutorial from the HarvardX Biomedical Data Science MOOC

383

http://lmgtfy.com/?q=R+Error+in+library+there+is+no+package+called
http://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r?sort=votes
https://stackoverflow.com/questions/tagged/r?sort=votes
http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example/5963610#5963610
http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example/5963610#5963610
https://support.bioconductor.org/
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html
http://tryr.codeschool.com/
http://swirlstats.com/
https://stat545-ubc.github.io/
https://stat545-ubc.github.io/
https://www.datacamp.com/courses/free-introduction-to-r
https://www.datacamp.com/courses
https://www.rstudio.com/resources/cheatsheets/
http://rseek.org/
https://www.bioconductor.org/help/package-vignettes/
https://www.bioconductor.org/help/workflows/
https://www.bioconductor.org/help/course-materials/
https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html
http://www.dataschool.io/dplyr-tutorial-for-faster-data-manipulation-in-r/
http://genomicsclass.github.io/book/pages/dplyr_tutorial.html

• A dplyr cheat sheet from RStudio

B.1.4 ggplot2 resources

• The official ggplot2 documentation
• The ggplot2 book, edition 1, by the developer, Hadley Wickham
• New version of the ggplot2 book, freely available on GitHub
• The ggplot2 Google Group (mailing list, support forum)
• LearnR: A blog with a good number of posts describing how to reproduce various kind

of plots using ggplot2
• SO questions tagged with ggplot2
• A catalog of graphs made with ggplot2, complete with accompanying R code
• RStudio’s ggplot2 cheat sheet

B.1.5 Markdown / RMarkdown resources

• Basic Markdown + RMarkdown reference
• In-browser markdown editors:

– Minimal: bioconnector.github.io/markdown-editor
– Better: stackedit.io, dillinger.io

• A good markdown reference
• A good 10-minute markdown tutorial
• RStudio’s RMarkdown Cheat Sheet and RMarkdown Reference Sheet
• The RMarkdown documentation has an excellent getting started guide, a gallery of

demos, and several articles illustrating advanced usage.
• The knitr website has lots of useful reference material about how knitr works, options,

and more.

B.2 RNA-seq resources

• University of Oregon’s RNA-seqlopedia: a comprehensive guide to RNA-seq starting
with experimental design, going through library prep, sequencing, and data analysis.

• Conesa et al. A survey of best practices for RNA-seq data analysis. Genome Biology
17:13 (2016). If there’s one review to read on RNA-seq and data analysis, it’s this one.

• rnaseq.wiki & accompanying paper for hands-on RNA-seq data analysis examples using
cloud computing.

• RNA-seq blog: Several blog posts per week on new methods and tools for RNA-seq
analysis.

384

https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
http://docs.ggplot2.org/
http://amzn.to/1akjqsR
https://github.com/hadley/ggplot2-book
https://groups.google.com/d/forum/ggplot2
http://learnr.wordpress.com/
http://stackoverflow.com/questions/tagged/ggplot2
http://shinyapps.stat.ubc.ca/r-graph-catalog/
https://www.rstudio.com/wp-content/uploads/2015/05/ggplot2-cheatsheet.pdf
http://bioconnector.github.io/markdown
http://bioconnector.github.io/markdown-editor
http://stackedit.io
http://dillinger.io
http://commonmark.org/help/
http://commonmark.org/help/tutorial/
https://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/lesson-1.html
http://rmarkdown.rstudio.com/gallery.html
http://rmarkdown.rstudio.com/gallery.html
http://rmarkdown.rstudio.com/articles.html
http://yihui.name/knitr/
http://yihui.name/knitr/options/
http://rnaseq.uoregon.edu/
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
http://rnaseq.wiki
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393
http://www.rna-seqblog.com/

• YouTube playlist: 2015 UC Davis Workshop on RNA-seq methods & algorithms (Harold
Pimentel).

• What the FPKM? A review of RNA-Seq expression units A blog post from Harold
Pimentel describing the relationship between R/FPKM and TPM.

• RNA-seq analysis exercise using Galaxy: an example analysis you can run yourself using
the Tophat+Cufflinks workflow.

• “RNA-Seq workflow: gene-level exploratory analysis and differential expression.” This
paper walks through an end-to-end gene-level RNA-Seq differential expression workflow
using Bioconductor packages, starting from FASTQ files.

• The DESeq2 paper describes the modeling approach and shows some benchmarks against
other normalization and differential expression strategies.

• The DESeq2 vignette is packed full of examples on using DESeq2, importing data, fitting
models, creating visualizations, references, etc.

• Lior Pachter’s paper “Models for transcript quantification from RNA-Seq” reviews dif-
ferent approaches for quantifying expression from RNA-seq data and how these affect
downstream analysis.

• SEQAnswers RNA-seq and more general bioinformatics forums are a great place to search
for answers.

• Biostars RNA-seq Q&A section.
• Blog post and printable PDF I created demonstrating how to do pathway analysis with

RNA-seq data and R.

385

https://www.youtube.com/playlist?list=PLfFNmoa-yUIb5cYG2R1zf5rtrQQKZvKwG
https://www.youtube.com/playlist?list=PLfFNmoa-yUIb5cYG2R1zf5rtrQQKZvKwG
https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/
https://usegalaxy.org/u/jeremy/p/galaxy-rna-seq-analysis-exercise
http://f1000research.com/articles/4-1070/v1
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
http://arxiv.org/abs/1104.3889
http://seqanswers.com/forums/forumdisplay.php?f=26
http://seqanswers.com/forums/forumdisplay.php?f=18
https://www.biostars.org/t/RNA-Seq/
http://www.gettinggeneticsdone.com/2015/12/tutorial-rna-seq-differential.html
https://dx.doi.org/10.6084/m9.figshare.1619655.v1

	Preface
	Acknowledgements
	Core Curriculum
	Basics
	RStudio
	Basic operations
	Functions
	Tibbles (data frames)

	Tibbles
	Our data
	Reading in data
	dplyr and readr
	read_csv()

	Inspecting data.frame objects
	Built-in functions
	Other packages

	Accessing variables & subsetting data frames
	BONUS: Preview to advanced manipulation

	Data Manipulation with dplyr
	Review
	Our data
	Reading in data

	The dplyr package
	dplyr verbs
	filter()
	select()
	mutate()
	arrange()
	summarize()
	group_by()

	The pipe: |>
	How |> works
	Nesting versus |>

	Exercises

	Tidy Data and Advanced Data Manipulation
	Tidy data
	The tidyr package
	gather()
	separate()
	|> it all together

	Tidy the yeast data
	separate() the NAME
	gather() the data
	inner_join() to GO
	Finishing touches

	Data Visualization with ggplot2
	Review
	Gapminder data
	dplyr review

	About ggplot2
	Plotting bivariate data: continuous Y by continuous X
	Adding layers
	Faceting
	Saving plots

	Plotting bivariate data: continuous Y by categorical X
	Plotting univariate continuous data
	Publication-ready plots & themes

	Refresher: Tidy Exploratory Data Analysis
	Chapter overview
	Horror Movies & Profit
	About the data
	Import and clean
	Exploratory Data Analysis
	Join to IMDB reviews

	College Majors & Income
	About the data
	Import and clean
	Exploratory Data Analysis

	Reproducible Reporting with RMarkdown
	Who cares about reproducible research?
	Reproducibility is hard!
	What's in it for you?
	Some recommendations for reproducible research

	RMarkdown
	Markdown
	RMarkdown workflow

	Authoring RMarkdown documents
	From scratch
	From a template with YAML metadata
	Chunk options
	Tables
	Changing output formats

	Distributing Analyses: Rpubs

	Electives
	Essential statistics
	Our data: NHANES
	About NHANES
	Import & inspect

	Descriptive statistics
	Missing data
	EDA

	Continuous variables
	T-tests
	Wilcoxon test
	Linear models
	ANOVA
	Linear regression
	Multiple regression

	Discrete variables
	Contingency tables
	Logistic regression

	Power & sample size
	T-test power/N
	Proportions power/N

	Tidying models
	Additional topics & recommended reading
	1. Batch effects
	2. What's my n?
	3. Technical versus biological replicates

	Survival Analysis
	Background
	Definitions
	Cox PH Model

	Survival analysis in R
	Getting started
	Survival Curves
	Kaplan-Meier Plots
	Cox Regression
	Categorizing for KM plots

	TCGA
	RTCGA
	Other TCGA Resources

	Predictive Analytics: Predicting and Forecasting Influenza
	Predictive Modeling
	H7N9 Outbreak Data
	Importing H7N9 data
	Exploratory data analysis
	Feature Extraction
	Imputation
	The caret package
	Model training
	Prediction on unknown samples

	Forecasting
	The Prophet Package
	CDC ILI time series data
	Forecasting with prophet

	Text Mining and NLP
	Chapter overview
	The Tidy Text Format
	The unnest_tokens function
	Example: Jane Austen Novels

	Sentiment Analysis
	Sentiment analysis with tidy tools
	Measuring contribution to sentiment

	Word and Document Frequencies
	TF, IDF, and TF-IDF
	Project Gutenberg

	Topic Modeling
	Document-term matrix
	Word-topic probabilities
	Document-topic probabilities

	Case Studies & Examples
	The Great Library Heist
	Happy Galentine's Day!
	Who wrote the anti-Trump New York Times op-ed?
	Seinfeld dialogues
	Sentiment analysis in Shakespeare tragedies
	Authorship of the Federalist Papers

	Count-Based Differential Expression Analysis of RNA-seq Data
	Background
	The biology
	Data pre-processing
	Data structure

	Import data
	Poor man's DGE
	DESeq2 analysis
	DESeq2 package
	Importing data
	DESeq pipeline
	Getting results

	Data Visualization
	Plotting counts
	MA & Volcano plots
	Transformation
	PCA
	Bonus: Heatmaps

	Record sessionInfo()
	Pathway Analysis

	Visualizing and Annotating Phylogenetic Trees
	The ggtree Package
	Tree Import
	Basic trees
	Other tree geoms

	Tree annotation
	Internal node number
	Labeling clades
	Connecting taxa

	Advanced tree annotation
	Bonus!
	Many trees
	Plot tree with other data
	Overlay organism silouhettes

	References
	Appendices
	Setup
	Software
	Data

	Further Resources
	R resources
	Getting Help
	General R Resources
	dplyr resources
	ggplot2 resources
	Markdown / RMarkdown resources

	RNA-seq resources

